Probing the Lateral Diffusion of Individual Neurotransmitter Receptors

Author(s):  
Enrica Maria Petrini ◽  
Andrea Barberis
Author(s):  
Laurent Groc ◽  
Martin Heine ◽  
Laurent Cognet ◽  
Brahim Lounis ◽  
Daniel Choquet

Author(s):  
Michael Edidin

Cell surface membranes are based on a fluid lipid bilayer and models of the membranes' organization have emphasised the possibilities for lateral motion of membrane lipids and proteins within the bilayer. Two recent trends in cell and membrane biology make us consider ways in which membrane organization works against its inherent fluidity, localizing both lipids and proteins into discrete domains. There is evidence for such domains, even in cells without obvious morphological polarity and organization [Table 1]. Cells that are morphologically polarised, for example epithelial cells, raise the issue of membrane domains in an accute form.The technique of fluorescence photobleaching and recovery, FPR, was developed to measure lateral diffusion of membrane components. It has also proven to be a powerful tool for the analysis of constraints to lateral mobility. FPR resolves several sorts of membrane domains, all on the micrometer scale, in several different cell types.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Eugenia V. Gurevich ◽  
Vsevolod V. Gurevich

Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 194
Author(s):  
Maxime Bouschet ◽  
Ulises Zavala-Moran ◽  
Vignesh Arounassalame ◽  
Rodolphe Alchaar ◽  
Clara Bataillon ◽  
...  

In this paper, the influence of etching depth on the dark current and photo-response of a mid-wave infrared Ga-free T2SL XBn pixel detector is investigated. Two wet chemical etching depths have been considered for the fabrication of a non-passivated individual pixel detector having a cut-off wavelength of 5 µm at 150 K. This study shows the strong influence of the lateral diffusion length of a shallow-etched pixel on the electro-optical properties of the device. The lowest dark current density was recorded for the deep-etched detector, on the order of 1 × 10−5 A/cm2 at 150 K and a bias operation equal to −400 mV. The corresponding quantum efficiency was measured at 60% (without anti-reflection coating) for a 3 µm thick absorbing layer. A comparison of experimental results obtained on the two kinds of etched pixels demonstrates the need for a deep-etching process combined with efficient passivation for FPA manufacturing.


1980 ◽  
Vol 255 (8) ◽  
pp. 3748-3756 ◽  
Author(s):  
H. Schneider ◽  
J.J. Lemasters ◽  
M. Höchli ◽  
C.R. Hackenbrock

Sign in / Sign up

Export Citation Format

Share Document