Automatic Finger Joint Detection for Volumetric Hand Imaging

Author(s):  
Johannes Bopp ◽  
Mathias Unberath ◽  
Stefan Steidl ◽  
Rebecca Fahrig ◽  
Isabelle Oliveira ◽  
...  
Keyword(s):  
2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Toru Hirano ◽  
Masayuki Nishide ◽  
Naoki Nonaka ◽  
Jun Seita ◽  
Kosuke Ebina ◽  
...  

Abstract Objective The purpose of this research was to develop a deep-learning model to assess radiographic finger joint destruction in RA. Methods The model comprises two steps: a joint-detection step and a joint-evaluation step. Among 216 radiographs of 108 patients with RA, 186 radiographs were assigned to the training/validation dataset and 30 to the test dataset. In the training/validation dataset, images of PIP joints, the IP joint of the thumb or MCP joints were manually clipped and scored for joint space narrowing (JSN) and bone erosion by clinicians, and then these images were augmented. As a result, 11 160 images were used to train and validate a deep convolutional neural network for joint evaluation. Three thousand seven hundred and twenty selected images were used to train machine learning for joint detection. These steps were combined as the assessment model for radiographic finger joint destruction. Performance of the model was examined using the test dataset, which was not included in the training/validation process, by comparing the scores assigned by the model and clinicians. Results The model detected PIP joints, the IP joint of the thumb and MCP joints with a sensitivity of 95.3% and assigned scores for JSN and erosion. Accuracy (percentage of exact agreement) reached 49.3–65.4% for JSN and 70.6–74.1% for erosion. The correlation coefficient between scores by the model and clinicians per image was 0.72–0.88 for JSN and 0.54–0.75 for erosion. Conclusion Image processing with the trained convolutional neural network model is promising to assess radiographs in RA.


Author(s):  
Xiang Qian Shi ◽  
Ho Lam Heung ◽  
Zhi Qiang Tang ◽  
Kai Yu Tong ◽  
Zheng Li

Stroke has been the leading cause of disability due to the induced spasticity in the upper extremity. The constant flexion of spastic fingers following stroke has not been well described. Accurate measurements for joint stiffness help clinicians have a better access to the level of impairment after stroke. Previously, we conducted a method for quantifying the passive finger joint stiffness based on the pressure-angle relationship between the spastic fingers and the soft-elastic composite actuator (SECA). However, it lacks a ground-truth to demonstrate the compatibility between the SECA-facilitated stiffness estimation and standard joint stiffness quantification procedure. In this study, we compare the passive metacarpophalangeal (MCP) joint stiffness measured using the SECA with the results from our designed standalone mechatronics device, which measures the passive metacarpophalangeal joint torque and angle during passive finger rotation. Results obtained from the fitting model that concludes the stiffness characteristic are further compared with the results obtained from SECA-Finger model, as well as the clinical score of Modified Ashworth Scale (MAS) for grading spasticity. These findings suggest the possibility of passive MCP joint stiffness quantification using the soft robotic actuator during the performance of different tasks in hand rehabilitation.


2014 ◽  
Vol 644-650 ◽  
pp. 879-883
Author(s):  
Jing Jing Yu

In various forms of movement of finger rehabilitation training, Continuous Passive Motion (CPM) of single degree of freedom (1 DOF) has outstanding application value. Taking classic flexion and extension movement for instance, this study collected the joint angle data of finger flexion and extension motion by experiments and confirmed that the joint motion of finger are not independent of each other but there is certain rule. This paper studies the finger joint movement rule from qualitative and quantitative aspects, and the conclusion can guide the design of the mechanism and control method of finger rehabilitation training robot.


Sign in / Sign up

Export Citation Format

Share Document