In Ovo Electroporation as a Useful Tool to Pursue Molecular Mechanisms of Neural Development in Chick Embryos

Author(s):  
Noritaka Odani ◽  
Xubin Hou ◽  
Harukazu Nakamura
Development ◽  
1999 ◽  
Vol 126 (22) ◽  
pp. 5127-5135 ◽  
Author(s):  
I. Araki ◽  
H. Nakamura

Regionalization of a simple neural tube is a fundamental event during the development of central nervous system. To analyze in vivo the molecular mechanisms underlying the development of mesencephalon, we ectopically expressed Engrailed, which is expressed in developing mesencephalon, in the brain of chick embryos by in ovo electroporation. Misexpression of Engrailed caused a rostral shift of the di-mesencephalic boundary, and caused transformation of dorsal diencephalon into tectum, a derivative of dorsal mesencephalon. Ectopic Engrailed rapidly repressed Pax-6, a marker for diencephalon, which preceded the induction of mesencephalon-related genes such as Pax-2, Pax-5, Fgf8, Wnt-1 and EphrinA2. In contrast, a mutant Engrailed, En-2(F51rE), bearing mutation in EH1 domain, which has been shown to interact with a co-repressor, Groucho, did not show the phenotype induced by wild-type Engrailed. Furthermore, VP16-Engrailed chimeric protein, the dominant positive form of Engrailed, caused caudal shift of di-mesencephalic boundary and ectopic Pax-6 expression in mesencephalon. These data suggest that (1) Engrailed defines the position of dorsal di-mesencephalic boundary by directly repressing diencephalic fate, and (2) Engrailed positively regulates the expression of mesencephalon-related genes by repressing the expression of their negative regulator(s).


Development ◽  
2002 ◽  
Vol 129 (15) ◽  
pp. 3633-3644 ◽  
Author(s):  
Yuki Sato ◽  
Kunio Yasuda ◽  
Yoshiko Takahashi

Boundary formation plays a central role in differentiating the flanking regions that give rise to discrete tissues and organs during early development. We have studied mechanisms by which a morphological boundary and tissue separation are regulated by examining chicken somite segmentation as a model system. By transplanting a small group of cells taken from a presumptive border into a non-segmentation site, we have found a novel inductive event where posteriorly juxtaposed cells to the next-forming border instruct the anterior cells to become separated and epithelialized. We have further studied the molecular mechanisms underlying these interactions by focusing on Lunatic fringe, a modulator of Notch signaling, which is expressed in the region of the presumptive boundary. By combining DNA in ovo electroporation and embryonic transplantation techniques we have ectopically made a sharp boundary of Lunatic fringe activity in the unsegmented paraxial mesoderm and observed a fissure formed at the interface. In addition, a constitutive active form of Notch mimics this instructive phenomenon. These suggest that the boundary-forming signals emanating from the posterior border cells are mediated by Notch, the action of which is confined to the border region by Lunatic fringe within the area where mRNAs of Notch and its ligand are broadly expressed in the presomitic mesoderm.


Methods ◽  
2001 ◽  
Vol 24 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Harukazu Nakamura ◽  
Jun-ichi Funahashi

Development ◽  
2000 ◽  
Vol 127 (8) ◽  
pp. 1641-1649
Author(s):  
B. Diaz ◽  
J. Serna ◽  
F. De Pablo ◽  
E.J. de la Rosa

Programmed cell death is an established developmental process in the nervous system. Whereas the regulation and the developmental role of neuronal cell death have been widely demonstrated, the relevance of cell death during early neurogenesis, the cells affected and the identity of regulatory local growth factors remain poorly characterized. We have previously described specific in vivo patterns of apoptosis during early retinal neurogenesis, and that exogenous insulin acts as survival factor (Diaz, B., Pimentel, B., De Pablo, F. and de la Rosa, E. J. (1999) Eur. J. Neurosci. 11, 1624–1632). Proinsulin mRNA was found to be expressed broadly in the early embryonic chick retina, and decreased later between days 6 and 8 of embryonic development, when there was increased expression of insulin-like growth factor I mRNA, absent or very scarce at earlier stages. Consequently, we studied whether proinsulin and/or insulin ((pro)insulin) action in prevention of cell death has physiological relevance during early neural development. In ovo treatment at day 2 of embryonic development with specific antibodies against (pro)insulin or the insulin receptor induced apoptosis in the neuroretina. The distribution of apoptotic cells two days after the blockade was similar to naturally occurring cell death, as visualized by TdT-mediated dUTP nick end labeling. The apoptosis induced by the insulin receptor blockade preferentially affected to the Islet1/2 positive cells, that is, the differentiated retinal ganglion cells. In parallel, the insulin survival effect on cultured retinas correlated with the activation of Akt to a greater extent than with the activation of MAP kinase. These results suggest that the physiological cell death occurring in early stages of retinal development is regulated by locally produced (pro)insulin through the activation of the Akt survival pathway.


2019 ◽  
Vol 13 (4) ◽  
pp. 591
Author(s):  
João Paulo Ferreira Rufino ◽  
Frank George Guimarães Cruz ◽  
Valcely Da Rocha Costa ◽  
André Ferreira Silva ◽  
Pedro Alves de Oliveira Filho ◽  
...  
Keyword(s):  
In Ovo ◽  

Sign in / Sign up

Export Citation Format

Share Document