scholarly journals Translational Medicine of Stem Cells: Central Nervous System Regeneration and Modeling Neurological Diseases

Author(s):  
Hideyuki Okano
2008 ◽  
Vol 31 (4) ◽  
pp. 7
Author(s):  
Phedias Diamandis ◽  
Jan Wildenhain ◽  
Ian D Clarke ◽  
Adrian G Sacher ◽  
Jeremy Graham ◽  
...  

The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain holds promise for the treatment of neurological diseases and has yielded newinsight into brain cancer. However, the complete repertoire of signaling pathways that governs the proliferation and self-renewal of NSCs, which we refer to as the ‘ground state’, remains largely uncharacterized. Although the candidate gene approach has uncovered vital pathways in NSC biology, so far only a few highly studied pathways have been investigated. Based on the intimate relationship between NSC self-renewal and neurosphere proliferation,we undertook a chemical genetic screen for inhibitors of neurosphere proliferation in order to probe the operational circuitry of the NSC. The screen recovered small molecules known to affect neurotransmission pathways previously thought to operate primarily in the mature central nervous system; these compounds also had potent inhibitory effects on cultures enriched for brain cancer stem cells. These results suggest that clinically approved neuromodulators may remodel the mature central nervous system and find application in the treatment of brain cancer. (colour figure available in PDF version)


Author(s):  
Konstantin Gulyabin

Mills' syndrome is a rare neurological disorder. Its nosological nature is currently not completely determined. Nevertheless, Mills' syndrome is considered to be a rare variant of the degenerative pathology of the central nervous system – a variant of focal cortical atrophy. The true prevalence of this pathology is unknown, since this condition is more often of a syndrome type, observed in the clinical picture of a number of neurological diseases (primary lateral sclerosis, frontotemporal dementia, etc.) and is less common in isolated form.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 41098-41104 ◽  
Author(s):  
Ruirui Yang ◽  
Caixia Xu ◽  
Tao Wang ◽  
Yuanqi Wang ◽  
Jingnan Wang ◽  
...  

The enhancement of the biological properties of hydrogels by surface modifying with bioactive molecules is of great significance, especially for the treatment of central nervous system injury by combining engrafted cells.


2012 ◽  
Vol 35 (3) ◽  
pp. 468-477 ◽  
Author(s):  
Trevor J. McGill ◽  
Benjamin Cottam ◽  
Bin Lu ◽  
Shaomei Wang ◽  
Sergej Girman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document