Characteristics of Soils Developed on Volcanic Parent Materials in the Barong Tongkok Area

Author(s):  
Darul Aksa ◽  
Nagaharu Tanaka ◽  
Seiichi Ohta ◽  
Syarif Effendi
Keyword(s):  
1962 ◽  
Vol 42 (2) ◽  
pp. 296-301 ◽  
Author(s):  
J. S. Clark ◽  
J. E. Brydon ◽  
H. J. Hortie

X-ray diffraction analysis was used to identify the clay minerals present in fourteen subsoil samples that were selected to represent some more important clay-bearing deposits in British Columbia. The clay mineralogy of the subsoils varied considerably but montmorillonitic clay minerals tended to predominate in the water-laid deposits of the south and illite in the soil parent materials of the Interior Plains region of the northeastern part of the Province.


1993 ◽  
Vol 73 (4) ◽  
pp. 447-457 ◽  
Author(s):  
W. E. Dubbin ◽  
A. R. Mermut ◽  
H. P. W. Rostad

Soils developed from parent materials derived from uppermost Cretaceous and Tertiary sedimentary rocks have been delineated from those which do not contain any of these younger sediments. The present study was initiated to determine the validity of this delineation. Parent materials from six locations in southwestern Saskatchewan were collected to determine their general chemical and physical properties. Clay fractions from each of these six parent materials were then subjected to detailed chemical and mineralogical analyses. The two parent materials containing the greatest amount of post-Bearpaw bedrock sediments (Jones Creek, Scotsguard) were characterized by substantially more organic carbon and less CaCO3. The presence of coal and the absence of carbonates in local bedrocks were considered to be the source of these deviations. In general, fine clays were comprised of 64–69% smectite, 14–21% illite and 10–13% kaolinite and coarse clay contained 32–39% smectite, 25–34% illite and 11–14% kaolinite. An exception was found in two fine clays which had less smectite but 3–6% vermiculite. Total iron content of the fine clays ranged from 7.16 to 8.11% expressed as Fe2O3. However, only a small fraction of this iron was extractable using the CDB technique. There were no substantial differences in surface areas or CECs of the clay fractions. Despite minor differences in the chemistry and mineralogy of these six parent materials, a separation of the soil associations does not appear to be warranted. Key words: Parent materials, uppermost Cretaceous, Tertiary, bedrock, clay mineralogy


Geoderma ◽  
2000 ◽  
Vol 96 (1-2) ◽  
pp. 81-99 ◽  
Author(s):  
M.P.F. Fontes ◽  
T.S. de Oliveira ◽  
L.M. da Costa ◽  
A.A.G. Campos

1964 ◽  
Vol 44 (2) ◽  
pp. 232-236 ◽  
Author(s):  
J. F. Dormaar

Two orthic profiles, widely separated geographically, of each of four parent materials—lacustrine, alluvial–lacustrine, glacial till, and Aeolian—were selected at undisturbed sites within each of the Brown, Dark Brown, and Thin Black soil zones. Material from the Ah and Bm horizons was subjected to solvent extraction, and for each sample the total organic carbon of seven different fractions was determined.The efficiency of the procedure in extracting humus carbon decreased as the total carbon content of the soil increased. Total organic matter, the first humic acid fraction, and the combined total of the three humic acid fractions showed significant differences between soil zones. The only significant separation between all four parent materials was made by the alcohol-benzene fraction. Other parent material separations were possible only following the summation of data of several fractions, such as the three humic acid fractions or the two fulvic acid fractions. A simplification of the procedure in case of soils of one Order and a modification to overcome the impeding effect of increased carbon content are requisite.


Author(s):  
Isaiah Ufuoma Efenudu ◽  
Ehi Robert Orhue ◽  
Ogochukwu Jennifer Ikeh ◽  
Michael Aimiesomon Erhayimwen ◽  
Blessing James

The effectiveness of three different extractants soil mixtures—HCl, HCl + H2S04, and DTPA-TEA, in order to determine Si from soil and the forms of Silicon as influenced by different parent materials under acidic medium. Seven forms of Silicon; namely water soluble, specifically adsorbed, oxides bound, organic matter bound, exchangeable, residual, total viz sequential fractionation. Extractable Si value established in this study was (50.0 mg kg-1), indicating negative effect on plant physiology. The physico-chemical properties decreased significantly with increase in soil depth vs soil parent materials. In addition, the forms of Si in the parent materials decreased in the pattern RES, bound residual fractions > EXC, soluble & exchangeable fractions > OM, organic matter fraction. Among the properties the silt fraction, pH & OM significantly and positively correlated with the forms of silicon, with negative correlation vs clay which maybe due to silicon adsorption by clayey fraction of the soil (redox). Therefore the soil maybe be maintained and conserved for farming activities.


Sign in / Sign up

Export Citation Format

Share Document