Helical Gear Dimensions in the Case of the Minimal Equalized Specific Sliding

SYROM 2009 ◽  
2009 ◽  
pp. 85-93 ◽  
Author(s):  
A. T. Antal ◽  
A. Antal
2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


2021 ◽  
Vol 166 ◽  
pp. 104476
Author(s):  
Chanho Choi ◽  
Hyoungjong Ahn ◽  
Young-jun Park ◽  
Geun-ho Lee ◽  
Su-chul Kim

2021 ◽  
Vol 160 ◽  
pp. 104299
Author(s):  
Bing Yuan ◽  
Geng Liu ◽  
Yanjiong Yue ◽  
Lan Liu ◽  
Yunbo Shen

Author(s):  
Z. Chen ◽  
B. Lei ◽  
Q. Zhao

Based on space curve meshing theory, in this paper, we present a novel geometric design of a circular arc helical gear mechanism for parallel transmission with convex-concave circular arc profiles. The parameter equations describing the contact curves for both the driving gear and the driven gear were deduced from the space curve meshing equations, and parameter equations for calculating the convex-concave circular arc profiles were established both for internal meshing and external meshing. Furthermore, a formula for the contact ratio was deduced, and the impact factors influencing the contact ratio are discussed. Using the deduced equations, several numerical examples were considered to validate the contact ratio equation. The circular arc helical gear mechanism investigated in this study showed a high gear transmission performance when considering practical applications, such as a pure rolling process, a high contact ratio, and a large comprehensive strength.


Sign in / Sign up

Export Citation Format

Share Document