Assessment of Critical Loads in Liuzhou, China Using Static and Dynamic Models

1995 ◽  
pp. 2401-2406
Author(s):  
Shaodong Xie ◽  
Jiming Hao ◽  
Zhongping Zhou ◽  
Ling Qi ◽  
Hanhui Yin
2004 ◽  
Vol 8 (4) ◽  
pp. 813-822 ◽  
Author(s):  
J. Kros ◽  
A. Tietema ◽  
J. P. Mol-Dijkstra ◽  
W. de Vries

Abstract. To evaluate the effects of nitrogen (N) emission policies, reliable information on nitrate concentrations and leaching fluxes from forest ecosystems is necessary. Insight into the regional variability of nitrate concentrations, to support local policy on emission abatement strategies is especially desirable. In this paper, three methods for the calculation of a spatial distribution of soil nitrate concentrations in Dutch forest ecosystems are compared. These are (i) a regression model based on observed nitrate concentrations and additional data on explanatory variables such as soil type, tree species and nitrogen deposition (ii) a semi-empirical dynamic model WANDA, and (iii) a process-oriented dynamic model SMART2. These two dynamic models are frequently used to evaluate the effects of reductions in nitrogen deposition at scales ranging from regional to countrywide. The results of the regression model evaluated the performance of the two dynamic models. Furthermore, the results of the three methods are compared with the steady-state approach currently used for the derivation of nitrogen critical loads. Both dynamic models, in the form of cumulative distribution functions, give similar results on a national scale. Regional variability is predicted differently by both models. Discrepancies are caused mainly by a difference in handling forest filtering and denitrification. All three methods show that, despite the high nitrogen inputs, Dutch forests still accumulate more N than they release. This implies that, in respect of groundwater quality, presently acceptable nitrogen deposition is higher than the (long-term) critical loads. However, in areas with high atmospheric nitrogen input, all three methods indicate that the EU standard for nitrate in groundwater (50 mg NO3 l–1) is exceeded. Steady-state with nitrogen deposition seems to have been reached in about 10% of the forested area, with a nitrate concentration greater than 50 mg NO3–1. Keywords: soil modelling, up-scaling, model validation, critical load


1995 ◽  
Vol 85 (4) ◽  
pp. 2401-2406 ◽  
Author(s):  
Shaodong Xie ◽  
Jiming Hao ◽  
Zhongping Zhou ◽  
Ling Qi ◽  
Hanhui Yin

2003 ◽  
Vol 7 (4) ◽  
pp. 609-617 ◽  
Author(s):  
A. Jenkins ◽  
B. J. Cosby ◽  
R. C. Ferrier ◽  
T. Larssen ◽  
M. Posch

Abstract. International agreements to reduce the emission of acidifying sulphur (S) and nitrogen (N) compounds have been negotiated on the basis of an understanding of the link between acidification related changes in soil and surface water chemistry and terrestrial and aquatic biota. The quantification of this link is incorporated within the concept of critical loads. Critical loads are calculated using steady state models and give no indication of the time within which acidified ecosystems might be expected to recover. Dynamic models provide an opportunity to assess the timescale of recovery and can go further to provide outputs which can be used in future emission reduction strategies. In this respect, the Target Load Function (TLF) is proposed as a means of assessing the deposition load necessary to restore a damaged ecosystem to some pre-defined acceptable state by a certain time in the future. A target load represents the deposition of S and N in a defined year (implementation year) for which the critical limit is achieved in a defined time (target year). A TLF is constructed using an appropriate dynamic model to determine the value of a chemical criterion at a given point in time given a temporal pattern of S and N deposition loads. A TLF requires information regarding: (i) the chemical criterion required to protect the chosen biological receptor (i.e. the critical limit); (ii) the year in which the critical limit is required to be achieved; and (iii) time pattern of future emission reductions. In addition, the TLF can be assessed for whole regions to incorporate the effect of these three essentially ecosystem management decisions. Keywords: emission reduction, critical load, target load, dynamic model, recovery time


2020 ◽  
pp. 41-50
Author(s):  
Ph. S. Kartaev ◽  
I. D. Medvedev

The paper examines the impact of oil price shocks on inflation, as well as the impact of the choice of the monetary policy regime on the strength of this influence. We used dynamic models on panel data for the countries of the world for the period from 2000 to 2017. It is shown that mainly the impact of changes in oil prices on inflation is carried out through the channel of exchange rate. The paper demonstrates the influence of the transition to inflation targeting on the nature of the relationship between oil price shocks and inflation. This effect is asymmetrical: during periods of rising oil prices, inflation targeting reduces the effect of the transfer of oil prices, limiting negative effects of shock. During periods of decline in oil prices, this monetary policy regime, in contrast, contributes to a stronger transfer, helping to reduce inflation.


2016 ◽  
pp. 141-149
Author(s):  
S.V. Yershov ◽  
◽  
R.М. Ponomarenko ◽  

Parallel tiered and dynamic models of the fuzzy inference in expert-diagnostic software systems are considered, which knowledge bases are based on fuzzy rules. Tiered parallel and dynamic fuzzy inference procedures are developed that allow speed up of computations in the software system for evaluating the quality of scientific papers. Evaluations of the effectiveness of parallel tiered and dynamic schemes of computations are constructed with complex dependency graph between blocks of fuzzy Takagi – Sugeno rules. Comparative characteristic of the efficacy of parallel-stacked and dynamic models is carried out.


2001 ◽  
Vol 29 (1) ◽  
pp. 23-43 ◽  
Author(s):  
D. Tsihlas ◽  
T. Lacroix ◽  
B. Clayton

Abstract Different numerical sub-structuring techniques for the representation of tire modal behavior have been developed in the past 20 years. By using these numerical techniques reduced dynamic models are obtained which can not only be used for internal studies but also be provided to the automobile industry and linked to reduced dynamic vehicle models in order to optimize the coupled vehicle-tire response for noise vibration and harshness purposes. Two techniques that have been developed in a custom-made finite element code are presented: 1) the component mode synthesis type models for which the wheel center interface is free and 2) the Craig and Bampton type models for which the wheel center interface is fixed. For both techniques the interface between the tire and the ground is fixed. The choice of fixed or free wheel center boundary condition is arbitrary. In this paper we will compare the formulation of these two numerical methods, and we will show the equivalency of both methods by showing the results obtained in terms of frequency and transfer functions. We will show that the two methods are equivalent in principle and the reduced dynamic models can be converted from one to the other. The advantages-disadvantages of each method will be discussed along with a comparison with experimentally obtained results.


2020 ◽  
Vol 6 (6) ◽  
pp. 31-38
Author(s):  
Gennady A. BELOV ◽  

Sign in / Sign up

Export Citation Format

Share Document