Reformulation of Mixture Theory-Based Poroelasticity for Interstitial Tissue Growth

2013 ◽  
pp. 251-261
Author(s):  
Stephen C. Cowin
2006 ◽  
Vol 52 (5) ◽  
pp. 571-594 ◽  
Author(s):  
Greg Lemon ◽  
John R. King ◽  
Helen M. Byrne ◽  
Oliver E. Jensen ◽  
Kevin M. Shakesheff

2011 ◽  
Vol 21 (09) ◽  
pp. 1901-1932 ◽  
Author(s):  
LUIGI PREZIOSI ◽  
GUIDO VITALE

The main aim of the paper is to embed the experimental results recently obtained studying the detachment force of single adhesion bonds in a multiphase model developed in the framework of mixture theory. In order to do that the microscopic information is upscaled to the macroscopic level to describe the dependence of some crucial terms appearing in the PDE model on the sub-cellular dynamics involving, for instance, the density of bonds on the membrane, the probability of bond rupture and the rate of bond formation. In fact, adhesion phenomena influence both the interaction forces among the constituents of the mixtures and the constitutive equation for the stress of the cellular components. Studying the former terms a relationship between interaction forces and relative velocity is found. The dynamics presents a behavior resembling the transition from epithelial to mesenchymal cells or from mesenchymal to ameboid motion, though the chemical cues triggering such transitions are not considered here. The latter terms are dealt with using the concept of evolving natural configurations consisting in decomposing in a multiplicative way the deformation gradient of the cellular constituent distinguishing the contributions due to growth, to cell rearrangement and to elastic deformation. This allows the description of situations in which if in some points the ensemble of cells is subject to a stress above a threshold, then locally some bonds may break and some others may form, giving rise to an internal reorganization of the tissue that allows to relax exceedingly high stresses.


Author(s):  
P. Mythravaruni ◽  
Parag Ravindran

Mechanical loading induces changes in the structure and function of soft tissue. Growth and remodeling results from the production and removal of constituents. We consider a tissue constituted of elastin and collagen. The collagen turns over at a much higher rate than elastin. In this work we propose a two-constituent, constrained mixture model for this soft tissue. One constituent is modeled as a viscoelastic material and the other as an elastic material. It is assumed that the collagen turns over depending on the stress applied and the elastin does not turn over. The standard mixture theory approach is followed and the balance equations are set-up. The model is studied in simple uni-axial loading to test its efficacy.


2008 ◽  
Vol 18 (3) ◽  
pp. 119-125
Author(s):  
Sarah Klemuk

Abstract Collaborative studies at the University of Iowa and the National Center for Voice and Speech aim to help the voices of teachers. Investigators study how cells and tissues respond to vibration doses simulating typical vocalization patterns of teachers. A commercially manufactured instrument is uniquely modified to support cell and tissue growth, to subject tissues to vocalization-like forces, and to measure viscoelastic properties of tissues. Through this basic science approach, steps toward safety limits for vocalization and habilitating rest periods for professional voice users will be achieved.


Hepatology ◽  
2009 ◽  
pp. NA-NA
Author(s):  
Ieva Peredniene ◽  
Eddy van de Leur ◽  
Birgit Lahme ◽  
Monika Siluschek ◽  
Axel M. Gressner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document