Coccoliths in Sediments of the Eastern Arctic Basin

Author(s):  
M. Baumann
Keyword(s):  
Author(s):  
Larisa A. Pautova ◽  
Vladimir A. Silkin ◽  
Marina D. Kravchishina ◽  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

The structure of the summer planktonic communities of the Northern part of the Barents sea in the first half of August 2017 were studied. In the sea-ice melting area, the average phytoplankton biomass producing upper 50-meter layer of water reached values levels of eutrophic waters (up to 2.1 g/m3). Phytoplankton was presented by diatoms of the genera Thalassiosira and Eucampia. Maximum biomass recorded at depths of 22–52 m, the absolute maximum biomass community (5,0 g/m3) marked on the horizon of 45 m (station 5558), located at the outlet of the deep trench Franz Victoria near the West coast of the archipelago Franz Josef Land. In ice-free waters, phytoplankton abundance was low, and the weighted average biomass (8.0 mg/m3 – 123.1 mg/m3) corresponded to oligotrophic waters and lower mesotrophic waters. In the upper layers of the water population abundance was dominated by small flagellates and picoplankton from, biomass – Arctic dinoflagellates (Gymnodinium spp.) and cold Atlantic complexes (Gyrodinium lachryma, Alexandrium tamarense, Dinophysis norvegica). The proportion of Atlantic species in phytoplankton reached 75%. The representatives of warm-water Atlantic complex (Emiliania huxleyi, Rhizosolenia hebetata f. semispina, Ceratium horridum) were recorded up to 80º N, as indicators of the penetration of warm Atlantic waters into the Arctic basin. The presence of oceanic Atlantic species as warm-water and cold systems in the high Arctic indicates the strengthening of processes of “atlantificacion” in the region.


2019 ◽  
Vol 11 (23) ◽  
pp. 2864 ◽  
Author(s):  
Jiping Liu ◽  
Yuanyuan Zhang ◽  
Xiao Cheng ◽  
Yongyun Hu

The accurate knowledge of spatial and temporal variations of snow depth over sea ice in the Arctic basin is important for understanding the Arctic energy budget and retrieving sea ice thickness from satellite altimetry. In this study, we develop and validate a new method for retrieving snow depth over Arctic sea ice from brightness temperatures at different frequencies measured by passive microwave radiometers. We construct an ensemble-based deep neural network and use snow depth measured by sea ice mass balance buoys to train the network. First, the accuracy of the retrieved snow depth is validated with observations. The results show the derived snow depth is in good agreement with the observations, in terms of correlation, bias, root mean square error, and probability distribution. Our ensemble-based deep neural network can be used to extend the snow depth retrieval from first-year sea ice (FYI) to multi-year sea ice (MYI), as well as during the melting period. Second, the consistency and discrepancy of snow depth in the Arctic basin between our retrieval using the ensemble-based deep neural network and two other available retrievals using the empirical regression are examined. The results suggest that our snow depth retrieval outperforms these data sets.


1977 ◽  
Vol 14 (4) ◽  
pp. 571-581 ◽  
Author(s):  
Ming-Ko Woo ◽  
Philip Marsh

To evaluate the effect of tundra vegetation on limestone solution processes, the present study was carried out in a small basin in southwestern Ellesmere Island, N.W.T. A test reach was selected along the stream, and water samples were collected at regular intervals from a seepage point entering the reach, a soil water pit at the bottom of a vegetated slope along the test reach, and from the stream at the outlet of the reach. Hydrochemical characteristics of the samples were described by several measured and calculated variables including water temperature, pH, calcium and total hardness, bicarbonate concentration, equilibrium partial pressure of carbon dioxide, and indices of saturation with respect to calcite and dolomite. Throughout the growing season of 1975, all samples indicated higher concentrations in water hardness and in bicarbonate than those reported in nonvegetated areas of the Arctic. A rising trend was apparent in these data, with the concentrations reaching a seasonal maximum in late summer. These phenomena are attributed to the production of biogenic carbon dioxide, which increased the aggressiveness of the water. The partial pressure of carbon dioxide in soil water was directly increased by this process, while the addition of soil water to the stream caused noticeable downstream increase in partial pressure of carbon dioxide and a corresponding reduction in saturation with respect to calcite and to dolomite. The influence of vegetation was therefore very marked in both surface and in subsurface flows.


Radiocarbon ◽  
1988 ◽  
Vol 30 (3) ◽  
pp. 277-277

This study was undertaken in cooperation with David Clark of the University of Wisconsin in order to confirm the previous estimates of low sedimentation rates in the Arctic Basin (see Table 7).


1991 ◽  
Vol 15 ◽  
pp. 17-25 ◽  
Author(s):  
Chi F. Ip ◽  
William D. Hibler ◽  
Gregory M. Flato

A generalized numerical model which allows for a variety of non-linear rheologies is developed for the seasonal simulation of sea-ice circulation and thickness. The model is used to investigate the effects (such as the role of shear stress and the existence of a flow rule) of different rheologies on the ice-drift pattern and build-up in the Arctic Basin. Differences in local drift seem to be closely related to the amount of allowable shear stress. Similarities are found between the elliptical and square cases and between the Mohr-Coulomb and cavitating fluid cases. Comparisons between observed and simulated buoy drift are made for several buoy tracks in the Arctic Basin. Correlation coefficients to the observed buoy drift range from 0.83 for the cavitating fluid to 0.86 for the square rheology. The average ratio of buoy-drift distance to average model-drift distance for several buoys is 1.15 (square), 1.18 (elliptical), 1.30 (Mohr-Coulomb) and 1.40 (cavitating fluid).


Polar Record ◽  
1998 ◽  
Vol 34 (188) ◽  
pp. 3-14 ◽  
Author(s):  
Roger Colony ◽  
Vladimir Radionov ◽  
Fred J. Tanis

AbstractThe Russian Arctic and Antarctic Research Institute (AARI) has conducted long-term meteorological studies over the Arctic basin and adjacent Siberian seas. Standard measurements of precipitation and snow geophysical properties were made, consistent with methods recommended by the World Meteorological Organization (WMO). An extensive set of snow and precipitation data has been collected during the last 40 years and has been assembled into a digital database. These data are now kept at the National Snow and Ice Data Center (NSIDC) and World Data Center A for Glaciology. The geophysical properties of snow and sea ice together affect the conductive, turbulent, and radiative energy exchanges between the ocean and atmosphere. The spatial and temporal variations in these exchanges have an impact on virtually all the physical processes operating across this interface. This paper describes some of the basic characteristics of these snow and precipitation data, including seasonal and interannual variability.


Sign in / Sign up

Export Citation Format

Share Document