Techniques for Assessing the Concrete (State) Condition in Bridges

Author(s):  
G. Grimaldi ◽  
R. Berissi ◽  
P. Brevet ◽  
A. Raharinaivo
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


2008 ◽  
Vol 78 (2) ◽  
Author(s):  
Stefano De Leo ◽  
Pietro Rotelli
Keyword(s):  

1974 ◽  
Vol 36 (1) ◽  
pp. 59-66
Author(s):  
Oscar A. Gómez-Poviña ◽  
Carmen Sainz de Calatroni ◽  
Susana Orden de Puhl ◽  
Mariano J. Guerrero

2006 ◽  
Author(s):  
Zhilin Qi ◽  
Zhimin Du ◽  
Baosheng Liang ◽  
Yong Tang ◽  
Shouping Wang ◽  
...  

Akustika ◽  
2021 ◽  
pp. 4-7
Author(s):  
Veronika Krutova ◽  
Besarion Meskhi

The load-bearing frames of the technological machinery of various functional purposes, such as bridge and gantry cranes, locomotives, motor locomotives, etc., are energetically closed rod systems [1-10].


Author(s):  
Sudi Mungkasi

We consider the problem of drug diffusion in the dermal layer of human body. Two existing mathematical models of the drug diffusion problem are recalled. We obtain that the existing models lead to inconsistent equations for the steady state condition. We also obtain that solutions to the existing models are unrealistic for some cases of the unsteady state condition, because negative drug concentrations occur due to the inappropriate assumption of the model. Therefore, in this paper, we propose a modified mathematical model, so that the model is consistent, and the solution is nonnegative for both steady and unsteady state conditions of the drug diffusion problem in the dermal layer of human body. For the steady state condition, the exact solution to the proposed model is given. For unsteady state condition, we use a finite difference method for solving the models numerically, where the discretisation is centred in space and forward in time. Simulation results confirm that our proposed model and method preserve the non-negativity of the solution to the problem, so the solution is more realistic than that of the old model.


2016 ◽  
Author(s):  
Tommaso Costa ◽  
Giuseppe Boccignone ◽  
Franco Cauda ◽  
Mario Ferraro

AbstractIn this research we have analyzed functional magnetic resonance imaging (fMRI) signals of different networks in the brain under resting state condition.To such end, the dynamics of signal variation, have been conceived as a stochastic motion, namely it has been modelled through a generalized Langevin stochastic differential equation, which combines a deterministic drift component with a stochastic component where the Gaussian noise source has been replaced with α-stable noise.The parameters of the deterministic and stochastic parts of the model have been fitted from fluctuating data. Results show that the deterministic part is characterized by a simple, linear decreasing trend, and, most important, the α-stable noise, at varying characteristic index α, is the source of a spectrum of activity modes across the networks, from those originated by classic Gaussian noise (α = 2), to longer tailed behaviors generated by the more general Lévy noise (1 ≤ α < 2).Lévy motion is a specific instance of scale-free behavior, it is a source of anomalous diffusion and it has been related to many aspects of human cognition, such as information foraging through memory retrieval or visual exploration.Finally, some conclusions have been drawn on the functional significance of the dynamics corresponding to different α values.Author SummaryIt has been argued, in the literature, that to gain intuition of brain fluctuations one can conceive brain activity as the motion of a random walker or, in the continuous limit, of a diffusing macroscopic particle.In this work we have substantiated such metaphor by modelling the dynamics of the fMRI signal of different brain regions, gathered under resting state condition, via a Langevin-like stochastic equation of motion where we have replaced the white Gaussian noise source with the more general α-stable noise.This way we have been able to show the existence of a spectrum of modes of activity in brain areas. Such modes can be related to the kind of “noise” driving the Langevin equation in a specific region. Further, such modes can be parsimoniously distinguished through the stable characteristic index α, from Gaussian noise (α = 2) to a range of sharply peaked, long tailed behaviors generated by Lévy noise (1 ≤ α < 2).Interestingly enough, random walkers undergoing Lévy motion have been widely used to model the foraging behaviour of a range of animal species and, remarkably, Lévy motion patterns have been related to many aspects of human cognition.


Sign in / Sign up

Export Citation Format

Share Document