Pigment-Protein Complexes of Algal Thylakoid Membranes: Variations in Pattern, Pigment Composition and Reaction Centre II Types During The Cell Cycle of Chlorella Fusca and after Adaptation to Low Light Intensities

Author(s):  
L. H. Grimme ◽  
I. Damm ◽  
D. Steinmetz ◽  
B. Scheffczyk
1985 ◽  
Vol 40 (1-2) ◽  
pp. 115-121 ◽  
Author(s):  
Peter Brandt ◽  
Helene Gleibs ◽  
Andrea Kohne ◽  
Wolfgang Wiessner

The seven chlorophyll-protein complexes CPIa, CPI, LHCP1, LHCP2, CPa, LHCP1 and LHCP11 known in part also from the chloroplasts of higher plants were isolated from Chlorella fusca. They were characterized by their molecular weight, their absorption maxima and their ratio of chlorophyll a/chlorophyll b. The composition of the chloropyhll-protein complexes changes during the cell cycle of Chlorella fusca. The ratio of LHCP/CPI decreases at the beginning of the light period and the ratio LHCP/CPa after the 2nd hour of the light period. Both quotients increase at the 5th hour of the light period, have a maximum at the 8th hour of the light period and decrease afterwards during the second part of the cell cycle. These altera­tions are no reflections of chlorophyll-accumulation, but cause modifications in the organization of the thylakoids and influence the photosynthetic efficiency of Chlorella fusca. The size of the PSI- and PSII-units during the cell cycle was estimated by these changes of the LHCP/CPI- and LHCP/CPa-ratios. In addition evidence is given that the assembly of LHCP1 and LHCP2 is no simple association of the monomeric forms of LHCPI or LHCPII.


2012 ◽  
Vol 169 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ewa Janik ◽  
Waldemar Maksymiec ◽  
Wojciech Grudziński ◽  
Wiesław I. Gruszecki

2012 ◽  
Vol 161 (1) ◽  
pp. 497-507 ◽  
Author(s):  
Helmut Kirchhoff ◽  
Richard M. Sharpe ◽  
Miroslava Herbstova ◽  
Robert Yarbrough ◽  
Gerald E. Edwards

1992 ◽  
Vol 47 (1-2) ◽  
pp. 51-56 ◽  
Author(s):  
Burkhard Vechtel ◽  
Elfriede K. Pistorius ◽  
Hans Georg Ruppel

Abstract Photosystem I complexes of Eremosphaera viridis De Bary (Chlorophyceae, Chlorococcales) were isolated and partially characterized. In the isolated PS I complexes, peptides of 64-60, 26, 23, 20, 15, 11 and 8.5 kDa could be detected. When Eremosphaera was grown under regular conditions the pigment composition of the isolated PS I complexes was similar to that found in PS I complexes from other green algae. However, when Eremosphaera was grown under nitrogen deficient conditions, PS I complexes contained the secondary carotenoids canthaxanthin and traces of astaxanthin and echinenone in addition to β-carotene, violaxanthin and lutein. The results presented indicate that the secondary carotenoids are associated with the LHC I of PS I. To our knowledge this represents the first report about the association of secondary carotenoids with light harvesting pigment protein complexes of green algae.


1986 ◽  
Vol 41 (3) ◽  
pp. 284-290 ◽  
Author(s):  
Robert Carpentier ◽  
Roger M. Leblanc ◽  
Guy Bellemare

Pigment photobleaching was performed in thylakoid membranes of Hordeum vulgare (wild type, mutant Chlorina f2, Norfluranzon treated seedlings) and in pigment-protein complexes (CP-I and LHCP) isolated from H. vulgare and Chlamydomonas reinhardtii. Multiphasic kinetics were obtained in all of the above cases. Energy transfer towards pigments absorbing at longer wavelength is postulated as a general protection mechanism against photobleaching. This mechanism explains a substantial bleaching of carotenoids and a faster bleaching of chlorophyll aggregates, absorbing at long wavelength. These conclusions were valid for isolated complexes as well as for thylakoid membranes, although membranes were less sensitive to light.


Sign in / Sign up

Export Citation Format

Share Document