Occurrence of Secondary Carotenoids in PS I Complexes Isolated from Eremosphaera viridis De Bary (Chlorophyceae)

1992 ◽  
Vol 47 (1-2) ◽  
pp. 51-56 ◽  
Author(s):  
Burkhard Vechtel ◽  
Elfriede K. Pistorius ◽  
Hans Georg Ruppel

Abstract Photosystem I complexes of Eremosphaera viridis De Bary (Chlorophyceae, Chlorococcales) were isolated and partially characterized. In the isolated PS I complexes, peptides of 64-60, 26, 23, 20, 15, 11 and 8.5 kDa could be detected. When Eremosphaera was grown under regular conditions the pigment composition of the isolated PS I complexes was similar to that found in PS I complexes from other green algae. However, when Eremosphaera was grown under nitrogen deficient conditions, PS I complexes contained the secondary carotenoids canthaxanthin and traces of astaxanthin and echinenone in addition to β-carotene, violaxanthin and lutein. The results presented indicate that the secondary carotenoids are associated with the LHC I of PS I. To our knowledge this represents the first report about the association of secondary carotenoids with light harvesting pigment protein complexes of green algae.

1984 ◽  
Vol 767 (3) ◽  
pp. 501-506 ◽  
Author(s):  
Marina D. Il'ina ◽  
Vitautas V. Krasauskas ◽  
Richardas J. Rotomskis ◽  
Alexander Yu. Borisov

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Pengqi Xu ◽  
Volha U Chukhutsina ◽  
Wojciech J Nawrocki ◽  
Gert Schansker ◽  
Ludwik W Bielczynski ◽  
...  

Carotenoids are essential in oxygenic photosynthesis: they stabilize the pigment–protein complexes, are active in harvesting sunlight and in photoprotection. In plants, they are present as carotenes and their oxygenated derivatives, xanthophylls. While mutant plants lacking xanthophylls are capable of photoautotrophic growth, no plants without carotenes in their photosystems have been reported so far, which has led to the common opinion that carotenes are essential for photosynthesis. Here, we report the first plant that grows photoautotrophically in the absence of carotenes: a tobacco plant containing only the xanthophyll astaxanthin. Surprisingly, both photosystems are fully functional despite their carotenoid-binding sites being occupied by astaxanthin instead of β-carotene or remaining empty (i.e. are not occupied by carotenoids). These plants display non-photochemical quenching, despite the absence of both zeaxanthin and lutein and show that tobacco can regulate the ratio between the two photosystems in a very large dynamic range to optimize electron transport.


1994 ◽  
Vol 49 (7-8) ◽  
pp. 427-438 ◽  
Author(s):  
A. Makewicz ◽  
A. Radunz ◽  
G. H. Schmid

Photosystem I preparations were obtained from wild type tobacco Nicotiana tabacum var. John William’s Broadleaf (JWB) and from the two chlorophyll-deficient mutants N. tabacum Su/su and N. tabacum Su/su var. Aurea. The preparations were characterized with respect to the chlorophyll a/b ratio, their photosynthetic activity and their absorption spectroscopic properties. Peptides from these preparations were analyzed by SDS polyacrylamide gel electrophoresis and transferred for the detection of bound carotenoids according to the Western blot procedure to nitrocellulose or Immobilon membranes. The PS I preparation from the wild type JWB consisted of the core and the LHCP complex. The core complex contains the two core peptides with the same apparent MW of 66 kDa and several peptides with the lesser molecular masses of 22, 20, 19, 17, 16, 10 and 9 kDa. The light-harvesting protein complex consists of 4 subunits with the molecular masses 28, 26, 25 and 24 kDa. The PS I preparations of the yellow-green mutant Su/su and of the Aurea mutant Su/su var. Aurea contain as impurity traces of the D1 and D2 core peptides of photosystem II and also traces of the chlorophyll-binding photosystem II peptides with the molecular masses 42 and 47 kDa. The peptides of the photosystem I preparation were characterized by specific photosystem I antisera: An antiserum to the photosystem I complex reacts in the Western blot only with the homologous peptides of photosystem I. In comparative analyses with photosystem II preparations this antiserum (directed to photosystem I) reacts, as expected, only with the peptides of the light-harvesting complex. An antiserum to the CP 1 core peptides reacts only with the 66 kDa peptides of photosystem I and gives no cross reaction with heterodimer forms of the D1/D2 core peptides of photosystem II. In the Western blot procedure by means of polyclonal monospecific antisera to carotenoids it was demonstrated that β-carotene is bound in high concentration onto the core peptides CP 1 and to a lesser extent onto the two larger subunits of the LHCP complex, exhibiting the molecular masses of 28 and 26 kDa. Neoxanthin is bound onto the same peptides. In contrast to this, lutein was only identified on the core peptides CP 1 and violaxanthin only on the larger subunits of the LHCP complex. As the carotenoids are labelled with antibodies, even after SDS treatment in the electrophoresis, it is assumed, that the carotenoids are covalently bound via the ionon ring to the respective peptide


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 203
Author(s):  
Maksym Golub ◽  
Adrian Kölsch ◽  
Artem Feoktystov ◽  
Athina Zouni ◽  
Jörg Pieper

High-resolution structures of photosynthetic pigment–protein complexes are often determined using crystallography or cryo-electron microscopy (cryo-EM), which are restricted to the use of protein crystals or to low temperatures, respectively. However, functional studies and biotechnological applications of photosystems necessitate the use of proteins isolated in aqueous solution, so that the relevance of high-resolution structures has to be independently verified. In this regard, small-angle neutron and X-ray scattering (SANS and SAXS, respectively) can serve as the missing link because of their capability to provide structural information for proteins in aqueous solution at physiological temperatures. In the present review, we discuss the principles and prototypical applications of SANS and SAXS using the photosynthetic pigment–protein complexes phycocyanin (PC) and Photosystem I (PSI) as model systems for a water-soluble and for a membrane protein, respectively. For example, the solution structure of PSI was studied using SAXS and SANS with contrast matching. A Guinier analysis reveals that PSI in solution is virtually free of aggregation and characterized by a radius of gyration of about 75 Å. The latter value is about 10% larger than expected from the crystal structure. This is corroborated by an ab initio structure reconstitution, which also shows a slight expansion of Photosystem I in buffer solution at room temperature. In part, this may be due to conformational states accessible by thermally activated protein dynamics in solution at physiological temperatures. The size of the detergent belt is derived by comparison with SANS measurements without detergent match, revealing a monolayer of detergent molecules under proper solubilization conditions.


1994 ◽  
Vol 21 (6) ◽  
pp. 759 ◽  
Author(s):  
TS Takeuchi ◽  
JP Thornber

Biochemical and spectroscopic studies on the effects of high temperatures (45-47� C) over a 1 h period on the protein composition, fluorescence and photochemical activities of the barley thylakoid membrane were made. Photosystem II (PS II) activity decreased as expected, and photosystem I (PS I) activity also unexpectedly decreased. Our data support previous conclusions that the decrease in PS I activity is largely due to inactivation (or loss) of a component between the two photosystems. A two-dimensional electrophoretic system permitted first the separation of the thylakoid pigment-protein complexes of unstressed and stressed plants, followed by a determination of their subunit composition. The changes in the protein composition of each pigment-protein complex in response to elevated temperatures were monitored. Heat changed the quaternary structure of PS II and resulted in removal of the oxygen-evolving enhancer proteins from the thylakoid, but did essentially no damage to the PS I complex. The PS II core complex dissociated from a dimeric form to a monomeric one, and the major LHC II component (LHC IIb) changed from a trimeric to a monomeric form. The pigments that are lost from thylakoids during heat stress are mainly removed from the PS II pigment-proteins.


Sign in / Sign up

Export Citation Format

Share Document