Pigment composition and functional state of the thylakoid membranes during preparation of samples for pigment-protein complexes separation by nondenaturing gel electrophoresis

2010 ◽  
Vol 48 (3) ◽  
pp. 475-480
Author(s):  
V. Karlicky ◽  
J. Podolinska ◽  
L. Nadkanska ◽  
M. Stroch ◽  
M. Cajanek ◽  
...  
2012 ◽  
Vol 169 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ewa Janik ◽  
Waldemar Maksymiec ◽  
Wojciech Grudziński ◽  
Wiesław I. Gruszecki

2012 ◽  
Vol 161 (1) ◽  
pp. 497-507 ◽  
Author(s):  
Helmut Kirchhoff ◽  
Richard M. Sharpe ◽  
Miroslava Herbstova ◽  
Robert Yarbrough ◽  
Gerald E. Edwards

1992 ◽  
Vol 47 (1-2) ◽  
pp. 51-56 ◽  
Author(s):  
Burkhard Vechtel ◽  
Elfriede K. Pistorius ◽  
Hans Georg Ruppel

Abstract Photosystem I complexes of Eremosphaera viridis De Bary (Chlorophyceae, Chlorococcales) were isolated and partially characterized. In the isolated PS I complexes, peptides of 64-60, 26, 23, 20, 15, 11 and 8.5 kDa could be detected. When Eremosphaera was grown under regular conditions the pigment composition of the isolated PS I complexes was similar to that found in PS I complexes from other green algae. However, when Eremosphaera was grown under nitrogen deficient conditions, PS I complexes contained the secondary carotenoids canthaxanthin and traces of astaxanthin and echinenone in addition to β-carotene, violaxanthin and lutein. The results presented indicate that the secondary carotenoids are associated with the LHC I of PS I. To our knowledge this represents the first report about the association of secondary carotenoids with light harvesting pigment protein complexes of green algae.


1986 ◽  
Vol 41 (3) ◽  
pp. 284-290 ◽  
Author(s):  
Robert Carpentier ◽  
Roger M. Leblanc ◽  
Guy Bellemare

Pigment photobleaching was performed in thylakoid membranes of Hordeum vulgare (wild type, mutant Chlorina f2, Norfluranzon treated seedlings) and in pigment-protein complexes (CP-I and LHCP) isolated from H. vulgare and Chlamydomonas reinhardtii. Multiphasic kinetics were obtained in all of the above cases. Energy transfer towards pigments absorbing at longer wavelength is postulated as a general protection mechanism against photobleaching. This mechanism explains a substantial bleaching of carotenoids and a faster bleaching of chlorophyll aggregates, absorbing at long wavelength. These conclusions were valid for isolated complexes as well as for thylakoid membranes, although membranes were less sensitive to light.


Sign in / Sign up

Export Citation Format

Share Document