The Development of Microstructure and Young’s Modulus in Reaction-Bonded Silicon Nitride

1977 ◽  
pp. 581-588 ◽  
Author(s):  
P. Longland ◽  
A. J. Moulson
1999 ◽  
Vol 594 ◽  
Author(s):  
T. Y. Zhang ◽  
Y. J. Su ◽  
C. F. Qian ◽  
M. H. Zhao ◽  
L. Q. Chen

AbstractThe present work proposes a novel microbridge testing method to simultaneously evaluate the Young's modulus, residual stress of thin films under small deformation. Theoretic analysis and finite element calculation are conducted on microbridge deformation to provide a closed formula of deflection versus load, considering both substrate deformation and residual stress in the film. Silicon nitride films fabricated by low pressure chemical vapor deposition on silicon substrates are tested to demonstrate the proposed method. The results show that the Young's modulus and residual stress for the annealed silicon nitride film are respectively 202 GPa and 334.9 MPa.


1994 ◽  
Vol 9 (8) ◽  
pp. 2072-2078 ◽  
Author(s):  
J.M. Grow ◽  
R.A. Levy

In this study, nanoindentation is used to determine Young's modulus of chemically vapor deposited films consisting of silicon carbide, silicon nitride, boron carbide, boron nitride, and silicon dioxide. Diethylsilane and ditertiarybutylsilane were used as precursors in the synthesis of the silicon-based material, while triethylamine borane complex was used for the boron-based material. The modulus of these films was observed to be dependent on the processing conditions and resulting composition of the deposits. For the silicon carbide, silicon nitride, boron carbide, and boron nitride films, the carbon content in the films was observed to increase significantly with higher deposition temperatures, resulting in a corresponding decrease in values of Young's modulus. The composition of the silicon dioxide films was near stoichiometry over the investigated deposition temperature range (375–475 °C) with correspondingly small variations in the micromechanical properties. Subsequent annealing of these oxide films resulted in a significant increase in the values of Young's modulus due to hydrogen and moisture removal.


2000 ◽  
Vol 657 ◽  
Author(s):  
C.-F. Qian ◽  
Y.-J. Su ◽  
M.-H. Zhao ◽  
T.-Y. Zhang

ABSTRACTThe present work further develops the microbridge testing method to characterize mechanical properties of bilayer thin films. A closed-form formula for deflection versus load under small deflection is derived with consideration of the substrate deformation and residual stress in each layer. The analysis shows that the solution for bending a bilayer beam is equivalent to that for bending a single-layer beam with an equivalent bending stiffness, an equivalent residual force and a residual moment. One can estimate the Young's modulus and residual stress in a layer if the corresponding values in the other layer are known. The analytic results are confirmed by finite element calculations. The microbridge tests are conducted on low-temperature-silicon oxide (LTO)/silicon nitride bilayer films as well as on silicon nitride single-layer films. All microbridge specimens are prepared by the microfabricating technique. The tests on the single-layer films provide the material properties of the silicon nitride films. Then, applying the proposed method for bilayer films under small deflection yields the Young's modulus of 37 GPa and the residual stress of -148 MPa for LTO films.


2015 ◽  
Vol 662 ◽  
pp. 142-146
Author(s):  
Zuzana Pramuková Vilčeková ◽  
Monika Kašiarová ◽  
Magdaléna Precnerová Domanická ◽  
Miroslav Hnatko ◽  
Pavol Šajgalík

The study deals with the development of highly porous undegradable ceramics based on silicon nitride as potential replacement of trabecular bone. These materials were produced using replication method with polyurethane foams as pore-forming agents to achieve similar porous structure to trabecular bone. Prepared porous ceramics had a bimodal pore structure with macro-pores larger than 200 μm and micro-pores smaller than 1 μm in diameter, which are necessary for tissue ingrowths, cell adhesion, adsorption of biological metabolites and nutrition delivery in organism. The microstructure and local mechanical properties (Young’s modulus and Yield strength) were evaluated and compared with human trabecular bone. Results showed that studied porous materials have satisfactory porosity and pore sizes for trabecular bone replacement. Young’s modulus of bone was 12.6 ± 2.23 GPa and porous silicon nitride samples ranged from 10.9 ± 3.38 GPa to 12.9 ± 1.13 GPa. The values of Yield strength of trabecular bone was determined as 493 ± 30.7 MPa and the values of porous samples varied from 250 ± 19.3 MPa to 558 ± 36.5 MPa. Young’s modulus and Yield strength increase with increasing of the pre-sintering temperature and multiple infiltrations.


Sign in / Sign up

Export Citation Format

Share Document