Further Photometric Observations of the Cataclysmic Variable PG 1012-029

Author(s):  
B. N. Ashoka ◽  
T. M. K. Marar ◽  
S. Seetha ◽  
K. Kasturirangan ◽  
U. R. Rao ◽  
...  
2020 ◽  
Vol 497 (2) ◽  
pp. 1475-1487
Author(s):  
G Subebekova ◽  
S Zharikov ◽  
G Tovmassian ◽  
V Neustroev ◽  
M Wolf ◽  
...  

ABSTRACT We obtained photometric observations of the nova-like (NL) cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in NL systems is related to the bi-conical wind from the accretion disc’s inner part. However, we found that the Hα emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader component’s source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period NL systems – a point we discuss.


2004 ◽  
Vol 190 ◽  
pp. 156-162
Author(s):  
Nceba Mhlahlo ◽  
Stephen B. Potter ◽  
David Buckley

AbstractSimultaneous photometry and spectroscopy of the Intermediate Polar TX Col were obtained in order to investigate its accretion mode and dynamics. The spectroscopic and photometric power spectra of TX Col are observed to change on relatively short timescales. Spectroscopy reveals a dominant periodicity at the orbital period (5.69 hr) and a spin period of 1909 s in radial velocities, while line equivalent widths show a strong periodicity at the beat period (2106 s). It is the first time that the orbital period has been detected in optical wavelengths.


2004 ◽  
Vol 194 ◽  
pp. 259-259
Author(s):  
R. Ishioka ◽  

Our time-series photometric observations of a short outburst of HT Cam in 2001 strongly suggest that disk instabilities occurred during the outburst.HT Cam is a cataclysmic variable identified as the optical counterpart of the hard X-ray source RX J0757.0+6306, discovered during the ROSAT All-Sky Survey. Tovmassian et al. (1998) suggested that this object is an intermediate polar with a shortest orbital period of 80.92min and a spin period of 8.52min. However, the existence of dwarf nova-like outbursts and the short orbital period allowed an alternative interpretation that it may be an SU UMa-type dwarf nova or WZ Sge-type stars (Tovmassian et al. 1998).


Author(s):  
N. R. Deminova ◽  
◽  
V. V. Shimansky ◽  
N. V. Borisov ◽  
I. F. Bikmae ◽  
...  

In this work, the optical radiation of the young pre-cataclysmic variable (PV) SDSS J162256 was investigated. Spectroscopic observations were carried out at BTA SAO RAS, photometric observations were carried out at RTT-150 telescope. Numerical modeling of theoretical light curves and spectra was done. The measured sets of radial velocities were analyzed taking into account the possible influence of reflection effects. The fundamental parameters of SDSS J162256 were determined based on a comprehensive analysis of observational data. It was shown that the previously proposed method for determining the masses of the PV components by modeling of the radial-velocity curves is effective only for systems with significant reflection effects.


1976 ◽  
Vol 73 ◽  
pp. 85-140 ◽  
Author(s):  
B. Warner

Spectroscopic and photometric observations relevant to the structure of classical novae, recurrent novae and dwarf novae are collected together. Details are given of optical, infrared, satellite ultraviolet, X-ray and radio observations. Most of these can be understood in terms of the hot spot model of cataclysmic variable stars. Estimates are made of luminosities, temperatures and rates of mass transfer. Observations made during eruptions of dwarf novae imply large changes taking place in the accretion disc.


2018 ◽  
Vol 62 (1) ◽  
pp. 31-49 ◽  
Author(s):  
T. S. Khruzina ◽  
I. B. Voloshina ◽  
S. Qian ◽  
V. G. Metlov

1999 ◽  
Vol 523 (2) ◽  
pp. 786-796 ◽  
Author(s):  
Marcos P. Diaz ◽  
Ivan Hubeny
Keyword(s):  

2021 ◽  
Vol 503 (4) ◽  
pp. 5274-5290
Author(s):  
A K Sen ◽  
V B Il’in ◽  
M S Prokopjeva ◽  
R Gupta

ABSTRACT We present the results of our BVR-band photometric and R-band polarimetric observations of ∼40 stars in the periphery of the dark cloud CB54. From different photometric data, we estimate E(B − V) and E(J − H). After involving data from other sources, we discuss the extinction variations towards CB54. We reveal two main dust layers: a foreground, E(B − V) ≈ 0.1 mag, at ∼200 pc and an extended layer, $E(B-V) \gtrsim 0.3$ mag, at ∼1.5 kpc. CB54 belongs to the latter. Based on these results, we consider the reason for the random polarization map that we have observed for CB54. We find that the foreground is characterized by low polarization ($P \lesssim 0.5$ per cent) and a magnetic field parallel to the Galactic plane. The extended layer shows high polarization (P up to 5–7 per cent). We suggest that the field in this layer is nearly perpendicular to the Galactic plane and both layers are essentially inhomogeneous. This allows us to explain the randomness of polarization vectors around CB54 generally. The data – primarily observed by us in this work for CB54, by A. K. Sen and colleagues in previous works for three dark clouds CB3, CB25 and CB39, and by other authors for a region including the B1 cloud – are analysed to explore any correlation between polarization, the near-infrared, E(J − H), and optical, E(B − V), excesses, and the distance to the background stars. If polarization and extinction are caused by the same set of dust particles, we should expect good correlations. However, we find that, for all the clouds, the correlations are not strong.


1998 ◽  
Vol 11 (1) ◽  
pp. 583-583
Author(s):  
S. Röser ◽  
U. Bastian ◽  
K.S. de Boer ◽  
E. Høg ◽  
E. Schilbach ◽  
...  

DIVA (Double Interferometer for Visual Astrometry) is a Fizeau interferometer on a small satellite. It will perform astrometric and photometric observations of at least 4 million stars. A launch in 2002 and a minimum mission length of 24 months are aimed at. A detailed description of the experiment can be obtained from the DIVA homepage at http://www.aip.de:8080/᷉dso/diva. An overview is given by Röser et al., 1997. The limiting magnitude of DIVA is about V = 15 for spectral types earlier than M0, but drops to about V = 17.5 for stars later than M5. Table 1 gives a short overview on DIVA’s performance. DIVA will carry out a skysurvey complete to V = 12.5. For the first time this survey will comprise precise photometry in at least 8 bands in the wavelength range from 400 to 1000 nm. DIVA will improve parallaxes by a factor of 3 compared to Hipparcos; proper motions by at least a factor of 2 and, in combination with the Hipparcos observations, by a factor of 10 for Hipparcos stars. At least 30 times asmany stars as Hipparcos will be observed, and doing this DIVA will fill the gap in observations between Hipparcos and GAIA. DIVA’s combined astrometric and photometric measurements of high precision will have important impacts on astronomy and astrophysics in the next decade.


2019 ◽  
Vol 15 (S350) ◽  
pp. 451-453
Author(s):  
G. Apostolovska ◽  
E. Vchkova Bebekovska ◽  
A. Kostov ◽  
Z. Donchev

AbstractAs a result of collisions during their lifetimes, asteroids have a large variety of different shapes. It is believed that high velocity collisions or rotational spin-up of asteroids continuously replenish the Sun’s zodiacal cloud and debris disks around extrasolar planets (Jewitt (2010)). Knowledge of the spin and shape parameters of the asteroids is very important for understanding collision asteroid processes. Lately photometric observations of asteroids showed that variations in brightness are not accompanied by variations in colour index which indicate that the shape of the lightcurve is caused by varying illuminations of the asteroid surface rather than albedo variations over the surface. This conclusion became possible when photometric investigations were combined with laboratory experiments (Dunlap (1971)). In this article using the convex lightcurve inversion method we obtained the sense of rotation, pole solutions and preliminary shape of 901 Brunsia.


Sign in / Sign up

Export Citation Format

Share Document