Molecular Modelling. Semi-Empirical and Empirical Methods of Theoretical Chemistry

Author(s):  
Jean-Louis Rivail
2020 ◽  
Vol 32 (10) ◽  
pp. 2463-2468
Author(s):  
Pradeep Kumar Gupta ◽  
Kishor Arora

Simulation studies based on ab initio, semi-empirical or density functional (DFT) calculations are now becoming common among the researchers who are pursuing their intereset in theoretical chemistry. These studies are based on quantum chemical softwares. These studies provide better insight for the structural and other parameters of the compounds. The present paper includes the studies on synthesis or procurement along with the simulated IR spectra of some benzoyl derivatives of N-heterocyclic compounds viz. 2-aminopyridine, 4-aminoantipyrine, 2-aminopyrimidine or 3-aminopyridine using four different AM1, PM3, MNDO and ZINDO1 semi-empirical methods. Among the methods used for the study, AM1 method is more reliable and more accurate so far as the prediction of spectral results is concerned.


2019 ◽  
Vol 35 (6) ◽  
pp. 1655-1668
Author(s):  
Pradeep Kumar Gupta ◽  
Kishor Arora

Quantum chemical viz. ab initio or semi-empirical based simulation studies are now prevailing among workers / scientists pursuing their studies in theoretical chemistry. These studies provide better insight for the compounds so far as the studies of their structural orother parameters are concern. Studies involving the packages developed on the basis of ab-initio or semi-empirical methods are proven to be more effective and as a better tool because of number of their advantages. The present communication includes the studies on synthesis or procurement along with the simulation of spectra viz. I.R. of some heterocyclic organic compounds.


Geotecnia ◽  
2015 ◽  
Vol 135 ◽  
pp. 89-113
Author(s):  
Jean Felix Cabette ◽  
◽  
<br>Heloisa Helena Silva Gonçalves ◽  
<br>Fernando Antônio Marinho ◽  
◽  
...  

2016 ◽  
Vol 18 (5) ◽  
pp. 4134-4143 ◽  
Author(s):  
Linyin Yan ◽  
Yan Wan ◽  
Andong Xia ◽  
Sheng Hien Lin ◽  
Ran Huang

Multi-scale theoretical model and spectra simulation for dendrimers combining TD-DFT/DFT and semi-empirical methods.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Rodrigo Cerqueira Rogerio

RESUMO: Apresenta-se neste trabalho a solução adotada para execução das fundações do Parque de Usina Eólica localizado no Ceará, com a utilização das estacas injetadas autoperfurantes, executadas em presença de solos arenosos. No qual consiste em perfurar o solo com altíssima velocidade por rotação e “pull down”, através da injeção simultânea de nata de cimento com medias pressões. Ocasionando na estaca um diâmetro final que pode obter o dobro do bit de perfuração, de acordo com o tipo de solo, gerado pelo efeito do jato da nata de cimento. Detalhando os processos executivos, verificando os aspectos técnicos e operacionais, para melhor compreender as características estruturais deste elemento. De forma a verificar “in situ” o desempenho deste novo tipo de fundação profunda, foram realizadas provas de carga, em estacas com diferentes diâmetros e comprimentos, realizadas em perfis estratigráficos de solos arenosos, para melhor avaliação de sua capacidade de carga. Analisando-se os ensaios das provas de carga interpretados a base da extrapolação da curva carga versus recalque e das previsões da capacidade de carga, obtidas por meio dos métodos semi-empíricos de correlação com ensaios de penetração (SPT), avaliando os padrões de execução desta tipologia de estaca injetada para comunidade geotécnica. ABSTRACT: This paper aims to establish the selected solution to except the foundations of the Wind Energy Park in Ceará (Brazil), with an executive methodology of the self-drilling injection piles framed in loco in Sandy soil. In which the soil drilling is done with the highest speed by rotation and pull down, through the simultaneous injection of grouting with medium pressures. This kind of drilling causes in the pile a final diameter that can get the double bore bit, according to the type of soil, done by the grouting blast. The executive processes are detailed as a whole, and also presenting the pile materials composition, in order to understand the structural characteristics of this element. To verify the performance of this new kind of deep drilling, instrumentations were done: settlement control and load tests in constructions with different structural characteristics, in self-drilling injected piles with different diameters and length, done in stratigraphical sandy, for a better evaluation of its load capacity. Analyzing the essays of load tests interpreted in the basis of curve extrapolation load versus settlement and the previsions of the load capacity, obtained by semi-empirical methods correlating with the penetrations methods (SPT), offering information to the geotechnical community.


Author(s):  
Banjo Semire ◽  
Isaiah Ajibade Adejoro ◽  
Olusegun Ayobami Odunola

In this paper, we theoretically studied the geometries, stabilities, electronic and thermodynamic properties of bridged bithiophene S-oxide (BTO-X) derivates (with X = BH2, SiH2, S, S=O, and O) by using semi-empirical methods, ab-initio, and Density functional theory. The geometries and thermodynamic parameters calculated by PM3 were in good agreement with that of B3LYP/6-31G(d). The bandgap calculated by B3LYP/6-31G(d) ranged from 3.94eV (BTO-O)-3.16eV (BTO-BH2). The absorption λmax calculated suing B3LYP/6-31G(d) shifted to longer wavelength with X=BH2, SiH2, and S=O due to enhancement of π-conjugated system whereas, BTO-S and BTO-O shifted to shorter wavelengths as compared to dimmer thiophene S-oxide (2TO).


Author(s):  
Musa E. Mohamed ◽  
Abdelhafeez M.A. Mohammed

Vibrational studies of amino acids experimentally and theoretically have been performed. The Semi-empirical methods optimization by PM6 and RM1 on the l- and d-amino acids (alanine, phenylalanine, aspartic and glutamic acid), showed no difference in energy between l-and d-isomers. The vibrational frequencies were calculated by semi-emprical methods (PM6 and RM1) and Ab Initio methods (B3LYP/6-31+G(d) and were scaled down by factors of 0.925 (RM1), 1.09 (PM6) and 0.89 (B3LYP/6-31+G(d)). The calculated and experimental vibrational frequencies have shown good general agreement.


2015 ◽  
Author(s):  
Joshua Counsil ◽  
Kevin McTaggart ◽  
Dominic Groulx ◽  
Kiari Boulama

A study has been undertaken to test the value of unsteady Reynolds-averaged Navier-Stokes (URANS) and traditional semi-empirical methods in the face of complex ship roll phenomena, and provide insight into the selection of bilge keel span for varying roll amplitudes. The computational fluid dynamics (CFD) code STAR-CCM+ is employed and two-dimensional submerged bodies undergoing forced roll motion are analyzed. The spatial resolution and timestepping scheme are validated by comparison with published numerical and experimental studies. The model is then applied to a fully-submerged circular cylinder with bilge keels of varying span and undergoing roll motion at varying angular amplitudes. Extracted hydrodynamic coefficients indicate that in general, increasing displacement amplitude and bilge keel span yields increased added mass and increased damping. The relationship is complex and highly dependent upon vortex interactions with each other and the body. The semi-empirical methods used for comparison yield good predictions for simple vortex interactions but fail where viscous effects are strong. Hence, URANS methods are shown to be necessary for friction-dominated flows while semi-empirical methods remain useful for initial design considerations.


Sign in / Sign up

Export Citation Format

Share Document