Horizontal Transfers

Author(s):  
Gordon Tullock
Keyword(s):  
Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1339-1347
Author(s):  
Alfred M Handler ◽  
Sheilachu P Gomez

Abstract Function of the Drosophila melanogaster hobo transposon in tephritid species was tested in transient embryonic excision assays. Wild-type and mutant strains of Anastrepha suspensa, Bactrocera dorsalis, B. cucurbitae, Ceratitis capitata, and Toxotrypana curvicauda all supported hobo excision or deletion both in the presence and absence of co-injected hobo transposase, indicating a permissive state for hobo mobility and the existence of endogenous systems capable of mobilizing hobo. In several strains hobo helper reduced excision. Excision depended on hobo sequences in the indicator plasmid, though almost all excisions were imprecise and the mobilizing systems appear mechanistically different from hobo. hobe-related sequences were identified in all species except T. curvicauda. Parsimony analysis yielded a subgroup including the B. cucurbitae and C. capitata sequences along with hobo and Hermes, and a separate, more divergent subgroup including the A. suspensa and B. dorsalis sequences. All of the sequences exist as multiple genomic elements, and a deleted form of the B. cucurbitae element exists in B. dorsalis. The hobo-related sequences are probably members of the hAT transposon family with some evolving from distant ancestor elements, while others may have originated from more recent horizontal transfers.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Kevin Cheeseman ◽  
Jeanne Ropars ◽  
Pierre Renault ◽  
Joëlle Dupont ◽  
Jérôme Gouzy ◽  
...  

2006 ◽  
Vol 40 (2) ◽  
pp. 609-619 ◽  
Author(s):  
N. Casse ◽  
Q.T. Bui ◽  
V. Nicolas ◽  
S. Renault ◽  
Y. Bigot ◽  
...  

2019 ◽  
Author(s):  
Andrea Desiderato ◽  
Marcos Barbeitos ◽  
Clément Gilbert ◽  
Jean-Luc Da Lage

AbstractThe subfamily GH13_1 of alpha-amylases is typical of Fungi, but it is also found in some unicellular eukaryotes (e.g. Amoebozoa, choanoflagellates) and non-bilaterian Metazoa. Since a previous study in 2007, GH13_1 amylases were considered ancestral to the Unikonts, including animals, except Bilateria, such that it was thought to have been lost in the ancestor of this clade. The only alpha-amylases known to be present in Bilateria so far belong to the GH13_15 and 24 subfamilies (commonly called bilaterian alpha-amylases) and were likely acquired by horizontal transfer from a proteobacterium. The taxonomic scope of Eukaryota genomes in databases has been greatly increased ever since 2007. We have surveyed GH13_1 sequences in recent data from ca. 1600 bilaterian species, 60 non-bilaterian animals and also in unicellular eukaryotes. As expected, we found a number of those sequences in non-bilaterians: Anthozoa (Cnidaria) and in sponges, confirming the previous observations, but none in jellyfishes and in Ctenophora. Our main and unexpected finding is that such fungal (also called Dictyo-type) amylases were also consistently retrieved in several bilaterian phyla: hemichordates (deuterostomes), brachiopods and related phyla, some molluscs and some annelids (protostomes). We discuss evolutionary hypotheses possibly explaining the scattered distribution of GH13_1 across bilaterians, namely, the retention of the ancestral gene in those phyla only and/or horizontal transfers from non-bilaterian donors.


2009 ◽  
Vol 191 (23) ◽  
pp. 7157-7164 ◽  
Author(s):  
Olga Tsoy ◽  
Dmitry Ravcheev ◽  
Arcady Mushegian

ABSTRACT Ethanolamine can be used as a source of carbon and nitrogen by phylogenetically diverse bacteria. Ethanolamine-ammonia lyase, the enzyme that breaks ethanolamine into acetaldehyde and ammonia, is encoded by the gene tandem eutBC. Despite extensive studies of ethanolamine utilization in Salmonella enterica serovar Typhimurium, much remains to be learned about EutBC structure and catalytic mechanism, about the evolutionary origin of ethanolamine utilization, and about regulatory links between the metabolism of ethanolamine itself and the ethanolamine-ammonia lyase cofactor adenosylcobalamin. We used computational analysis of sequences, structures, genome contexts, and phylogenies of ethanolamine-ammonia lyases to address these questions and to evaluate recent data-mining studies that have suggested an association between bacterial food poisoning and the diol utilization pathways. We found that EutBC evolution included recruitment of a TIM barrel and a Rossmann fold domain and their fusion to N-terminal α-helical domains to give EutB and EutC, respectively. This fusion was followed by recruitment and occasional loss of auxiliary ethanolamine utilization genes in Firmicutes and by several horizontal transfers, most notably from the firmicute stem to the Enterobacteriaceae and from Alphaproteobacteria to Actinobacteria. We identified a conserved DNA motif that likely represents the EutR-binding site and is shared by the ethanolamine and cobalamin operons in several enterobacterial species, suggesting a mechanism for coupling the biosyntheses of apoenzyme and cofactor in these species. Finally, we found that the food poisoning phenotype is associated with the structural components of metabolosome more strongly than with ethanolamine utilization genes or with paralogous propanediol utilization genes per se.


2002 ◽  
Vol 68 (7) ◽  
pp. 3575-3581 ◽  
Author(s):  
Masanobu Nishikawa ◽  
Ken'ichi Ogawa

ABSTRACT We developed a simple and sensitive screening method to investigate the distribution of microbes producing an antimicrobial poly(amino acid), ε-poly-l-lysine (ε-PL), in microflora. An acidic dye, Poly R-478, incorporated in an agar plate detected ε-PL producers by electrostatic interaction with the secreted basic polymers. All ε-PL producers, isolated after careful and sufficient screening of soil microflora, belonged exclusively to two groups of bacteria of the family Streptomycetaceae and ergot fungi. They were characterized based on the density and diameter of the concentric zone formed by the secreted polymers. The density depended on each isolate. The increase in the diameter of the concentric zone per unit of time varied among isolates and was negatively correlated with the molecular weight. Although the distribution of ε-PL producers was extremely limited, their products were structurally varied. The molecular masses of the secreted polymers among the isolates ranged from 0.8 to 2.0 kDa. There were also isolates producing unknown polymers inconsistent with the correlation or producing a mixture of polymers with original and modified structures. A chemically modified polymer was an ε-PL derivative, as determined by mass spectrometry. Since the structural variations had no relation to the phylogenetic position of the isolates, it is possible that enzymes involved in the synthesis diversified after putative horizontal transfers of relevant genes.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 339 ◽  
Author(s):  
Ginaini Grazielli Doin de Moura ◽  
Philippe Remigi ◽  
Catherine Masson-Boivin ◽  
Delphine Capela

Rhizobia, the nitrogen-fixing symbionts of legumes, are polyphyletic bacteria distributed in many alpha- and beta-proteobacterial genera. They likely emerged and diversified through independent horizontal transfers of key symbiotic genes. To replay the evolution of a new rhizobium genus under laboratory conditions, the symbiotic plasmid of Cupriavidus taiwanensis was introduced in the plant pathogen Ralstonia solanacearum, and the generated proto-rhizobium was submitted to repeated inoculations to the C. taiwanensis host, Mimosa pudica L. This experiment validated a two-step evolutionary scenario of key symbiotic gene acquisition followed by genome remodeling under plant selection. Nodulation and nodule cell infection were obtained and optimized mainly via the rewiring of regulatory circuits of the recipient bacterium. Symbiotic adaptation was shown to be accelerated by the activity of a mutagenesis cassette conserved in most rhizobia. Investigating mutated genes led us to identify new components of R. solanacearum virulence and C. taiwanensis symbiosis. Nitrogen fixation was not acquired in our short experiment. However, we showed that post-infection sanctions allowed the increase in frequency of nitrogen-fixing variants among a non-fixing population in the M. pudica–C. taiwanensis system and likely allowed the spread of this trait in natura. Experimental evolution thus provided new insights into rhizobium biology and evolution.


2012 ◽  
Vol 2 (3) ◽  
pp. 163-167 ◽  
Author(s):  
Luigi Grassi ◽  
Jacopo Grilli ◽  
Marco Cosentino Lagomarsino

Genomics ◽  
2020 ◽  
Vol 112 (6) ◽  
pp. 5295-5304
Author(s):  
Jiawen Yang ◽  
Bin Yuan ◽  
Yu Wu ◽  
Meiyu Li ◽  
Jian Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document