scholarly journals Multiple recent horizontal transfers of a large genomic region in cheese making fungi

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Kevin Cheeseman ◽  
Jeanne Ropars ◽  
Pierre Renault ◽  
Joëlle Dupont ◽  
Jérôme Gouzy ◽  
...  
2020 ◽  
Vol 16 (8) ◽  
pp. 20200299
Author(s):  
Suzanne J. Kelson ◽  
Stephanie M. Carlson ◽  
Michael R. Miller

Migration is a complex trait that often has genetic underpinnings. However, it is unclear if migratory behaviour itself is inherited (direct genetic control), or if the decision to migrate is instead the outcome of a set of physiological traits (indirect genetic control). For steelhead/rainbow trout ( Oncorhynchus mykiss ), migration is strongly linked to a large genomic region across their range. Here, we demonstrate a shared allelic basis between early life growth rate and migratory behaviour. Next, we demonstrate that early life growth differs among resident/migratory genotypes in wild juveniles several months prior to migration, with resident genotypes achieving a larger size in their first few months of life than migratory genotypes. We suggest that the genetic basis of migration is likely indirect and mediated by physiological traits such as growth rate. Evolutionary benefits of this indirect genetic mechanism likely include flexibility among individuals and persistence of life-history diversity within and among populations.


2007 ◽  
Vol 189 (10) ◽  
pp. 3909-3917 ◽  
Author(s):  
Louis B. Rice ◽  
Lenore L. Carias ◽  
Rebecca Hutton-Thomas ◽  
Susan Rudin

ABSTRACT In recent work, we described the excision of a large genomic region from Enterococcus faecium D344R in which the sequence from “joint” regions suggested that excision resulted from the interaction of conjugative transposon Tn916 and the related mobile element Tn5386. In the present study, we examined the ability of integrases and integrase-excisase combinations from Tn916 and Tn5386 to promote the excision of constructs consisting of the termini of Tn916, Tn5386, and the VanB mobile element Tn5382. Integrases alone from either Tn916 or Tn5386 promoted the circularization of constructs from the three different transposons, even when the different termini used in the constructs were discordant in their transposon of origin. The termini of Tn916 and Tn5382 found in all joints were consistent with previously identified Tn916 and Tn5382 termini. Substantial variation was seen in the integrase terminus of Tn5386 used to form joints, regardless of the integrase that was responsible for circularization. Variability was observed in joints formed from Tn5386 constructs, in contrast to joints observed with the termini of Tn916 or Tn5382. The coexpression of excisase yielded some variability in the joint regions observed. These data confirm that integrases from some Tn916-like elements can promote circularization with termini derived from heterologous transposons and, as such, could promote excision of large genomic regions flanked by such elements. These findings also raise interesting questions about the sequence specificities of the C terminals of Tn916-like integrases, which bind to the ends and facilitate strand exchange.


Genome ◽  
1998 ◽  
Vol 41 (6) ◽  
pp. 806-817
Author(s):  
Shaun M Morroll ◽  
Zoe A Wilson

The approach of partial restriction mapping and vector hybridisation has been used to restriction map and align six yeast artificial chromosomes (YACs) corresponding to the top arm (~27.9 centiMorgans, cM) of Arabidopsis chromosome 5 and confirm the chimeric nature of a further four clones which map to this region. The restriction endonucleases Sma1 and Sfi1 which recognise rare-medium frequency sites in the Arabidopsis genome were used. This work has restriction mapped a 315 kb region that includes a number of genes implicated in floral development, namely PISTILLATA and TOUSLED, and a number of uncharacterised genes involved in male gametogenesis (e.g., Ms1 and Ms37). The information generated can be used to transcriptionally map genes to this contig and will provide data for the isolation of several uncharacterised floral development genes which lie in this region. This approach has demonstrated how large tracts of YAC DNA can be mapped and aligned to show the presence/absence of chimeric YAC clones and provide detailed restriction knowledge for a large genomic region to help facilitate the positional cloning of genes.Key words: yeast artificial chromosome, YAC, Arabidopsis thaliana, partial restriction mapping, floral development.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61917 ◽  
Author(s):  
Rong Qiu ◽  
Chao Chen ◽  
Hong Jiang ◽  
Libing Shen ◽  
Min Wu ◽  
...  

Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1427-1434 ◽  
Author(s):  
Harald Eggert ◽  
Kirstin Bergemann ◽  
Harald Saumweber

Abstract As an alternative to existing methods for the detection of new insertions during a transposon mutagenesis, we adapted the method of vectorette ligation to genomic restriction fragments followed by PCR to obtain genomic sequences flanking the transposon. By combining flies containing a defined genomic transposon with an excess of flies containing unrelated insertion sites, we demonstrate the specificity and sensitivity of the procedure in the detection of integration events. This method was applied in a transposon-tagging screen for BJ1, the Drosophila homolog of the vertebrate gene Regulator of Chromosome Condensation (RCCI). Genetic mobilization of a single genomic P element was used to generate preferentially new local insertions from which integrations into a genomic region surrounding the BJ1 gene were screened. Flies harboring new insertions were phenotypically selected on the basis of the zeste1-dependent transvection of white. We detected a single transposition to a 13-kb region close to the BJ1 gene among 6650 progeny that were analyzed. Southern analysis of the homozygous line confirmed the integration 3 kb downstream of BJ1.


2020 ◽  
Vol 104 (21) ◽  
pp. 9283-9294
Author(s):  
Julian Droste ◽  
Martin Kulisch ◽  
Timo Wolf ◽  
Lena Schaffert ◽  
Susanne Schneiker-Bekel ◽  
...  

Abstract Actinoplanes sp. SE50/110 is the industrially relevant producer of acarbose, which is used in the treatment of diabetes mellitus. Recent studies elucidated the expression dynamics in Actinoplanes sp. SE50/110 during growth. From these data, we obtained a large genomic region (ACSP50_3900 to ACSP50_3950) containing 51 genes, of which 39 are transcribed in the same manner. These co-regulated genes were found to be stronger transcribed on maltose compared with glucose as a carbon source. The transcriptional regulator MalT was identified as an activator of this maltose-regulated large genomic region (MRLGR). Since most of the genes are poorly annotated, the function of this region is farther unclear. However, comprehensive BLAST analyses indicate similarities to enzymes involved in amino acid metabolism. We determined a conserved binding motif of MalT overlapping the -35 promoter region of 17 transcription start sites inside the MRLGR. The corresponding sequence motif 5′-TCATCC-5nt-GGATGA-3′ displays high similarities to reported MalT binding sites in Escherichia coli and Klebsiella pneumoniae, in which MalT is the activator of mal genes. A malT deletion and an overexpression mutant were constructed. Differential transcriptome analyses revealed an activating effect of MalT on 40 of the 51 genes. Surprisingly, no gene of the maltose metabolism is affected. In contrast to many other bacteria, MalT is not the activator of mal genes in Actinoplanes sp. SE50/110. Finally, the MRLGR was found partly in other closely related bacteria of the family Micromonosporaceae. Even the conserved MalT binding site was found upstream of several genes inside of the corresponding regions. Key points • MalT is the maltose-dependent activator of a large genomic region in ACSP50_WT. • The consensus binding motif is similar to MalT binding sites in other bacteria. • MalT is not the regulator of genes involved in maltose metabolism in ACSP50_WT.


Blood ◽  
2012 ◽  
Vol 119 (13) ◽  
pp. 2981-2990 ◽  
Author(s):  
Marie Lia ◽  
Amanda Carette ◽  
Hongyan Tang ◽  
Qiong Shen ◽  
Tongwei Mo ◽  
...  

Abstract Deletion of chromosomal region 13q14 represents the most common genetic aberration in B-cell chronic lymphocytic leukemia (CLL). 13q14 deletions are commonly large and heterogeneous in size and affect multiple genes. We recently found that targeted deletion in mice of the 0.11 megabase (mb)–long minimal deleted region (MDR) encompassing the DLEU2/miR-15a/16-1 cluster recapitulates the spectrum of CLL-associated lymphoproliferations in humans, including CLL, CD5+ monoclonal B-cell lymphocytosis, and CD5− non-Hodgkin lymphomas. In the present study, we demonstrate that additional deletion of the 0.69-mb large genomic region telomeric to the MDR called the common deleted region (CDR) changed the spectrum of lymphoproliferations developing in CDR- versus MDR-deleted mice in that the number of CLL among B-cell lymphoproliferations was significantly elevated in the former. In addition, CDR-deleted mice seemed to succumb to their disease faster than MDR-deleted mice. Comparing HCDR3 regions of CD5+ lymphoproliferations derived from this and published CLL mouse models, 44% (29 of 66) of junctions could be assigned to 8 sets of highly similar HCDR3 regions, demonstrating that CLL developing in mice frequently expresses almost identical, stereotypic Ag receptors. These results suggest that the size of 13q14 deletions influences the phenotype of the developing lymphoproliferations and potentially the severity of disease, suggesting a tumor-suppressor function for genetic elements in addition to DLEU2/miR-15a/16-1.


Sign in / Sign up

Export Citation Format

Share Document