Dimensional instability of timber

1993 ◽  
pp. 95-120
Author(s):  
J. C. F. Walker
Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 327
Author(s):  
Morwenna J. Spear ◽  
Simon F. Curling ◽  
Athanasios Dimitriou ◽  
Graham A. Ormondroyd

Wood modification is now widely recognized as offering enhanced properties of wood and overcoming issues such as dimensional instability and biodegradability which affect natural wood. Typical wood modification systems use chemical modification, impregnation modification or thermal modification, and these vary in the properties achieved. As control and understanding of the wood modification systems has progressed, further opportunities have arisen to add extra functionalities to the modified wood. These include UV stabilisation, fire retardancy, or enhanced suitability for paints and coatings. Thus, wood may become a multi-functional material through a series of modifications, treatments or reactions, to create a high-performance material with previously impossible properties. In this paper we review systems that combine the well-established wood modification procedures with secondary techniques or modifications to deliver emerging technologies with multi-functionality. The new applications targeted using this additional functionality are diverse and range from increased electrical conductivity, creation of sensors or responsive materials, improvement of wellbeing in the built environment, and enhanced fire and flame protection. We identified two parallel and connected themes: (1) the functionalisation of modified timber and (2) the modification of timber to provide (multi)-functionality. A wide range of nanotechnology concepts have been harnessed by this new generation of wood modifications and wood treatments. As this field is rapidly expanding, we also include within the review trends from current research in order to gauge the state of the art, and likely direction of travel of the industry.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
H. F. Wang ◽  
Z. F. Sang ◽  
L. P. Xue ◽  
G. E. O. Widera

The burst pressure of cylinders with hillside nozzle is determined using both experimental and finite element analysis (FEA) approaches. Three full-scale test models with different angles of the hillside nozzle were designed and fabricated specifically for a hydrostatic test in which the cylinders were pressurized with water. 3D static nonlinear finite element simulations of the experimental models were performed to obtain the burst pressures. The burst pressure is defined as the internal pressure for which the structure approaches dimensional instability, i.e., unbounded strain for a small increment in pressure. Good agreement between the predicted and measured burst pressures shows that elastic-plastic finite element analysis is a viable option to estimate the burst pressure of the cylinders with hillside nozzles. The preliminary results also suggest that the failure location is near the longitudinal plane of the cylinder-nozzle intersection and that the burst pressure increases slightly with an increment in the angle of the hillside nozzle.


1988 ◽  
Vol 23 (3) ◽  
pp. 356-360 ◽  
Author(s):  
V. A. Vladimirov ◽  
K. I. Il'in

2019 ◽  
Vol 74 (2) ◽  
pp. 131-138
Author(s):  
E.K. El-Shewy ◽  
S.K. Zaghbeer ◽  
A.A. El-Rahman

AbstractNonlinearity properties of obliquely wave propagation and instability in collisionless magnetized nonthermal dusty plasmas containing fluid of negative-positive grains are investigated. Zakharov-Kuznetsov equation is obtained and the three-dimensional wave instability is studied. The parameters such as polarity charge ratio, cyclotron frequency and fast nonthermal effectiveness of the instability properties and growth rate are theoretically studied. It is found that both positive and negative soliton profiles are formed depending on the fraction ratio of electron-ion nonthermality. Also, the growth rate was dependent nonlinearly on the direction cosines, the cyclotron frequency and the positive (negative) grain charge ratio, but independent of the fractional ratio of electron-ion nonthermality. Present discussion may be very significant regarding the observations of nonlinear phenomena in space.


1999 ◽  
Vol 1999 (185) ◽  
pp. 119-125 ◽  
Author(s):  
Nobuhiro Baba ◽  
Yasunori Sakaguchi ◽  
Satomi Ito

1995 ◽  
Vol 290 ◽  
pp. 203-212
Author(s):  
Melvin E. Stern

An inviscid laminar boundary layer flow Û(ŷ) with vertical thickness λy, and free stream velocity U is disturbed at time $\tcirc$ = 0 by a normal velocity $\vcirc$ and by a spanwise velocity ŵ([xcirc ],ŷ, $\zcirc$, 0) of finite amplitude αU, with spanwise ($\zcirc$) scale λz, and streamwise ([xcirc ]) scale λx = λz/α; the streamwise velocity û([xcirc ],ŷ,$\zcirc$,$\tcirc$) is initially undisturbed. A long wave λy/λz → 0) expansion of the Euler equations for fixed α and time scale $\tcirc$s = U−1λz/α results in a hyperbolic equation for Lagrangian displacements ŷ. Within the interval $\tcirc$ > $\tcirc$s of asymptotic validity, finite parcel displacements (O(λy)) with finite (O(U)) û fluctuations occur, independent of α no matter how small; the basic flow Û is therefore said to be unstable to streaky (λx [Gt ] λz) spanwise perturbations. The temporal development of the ('spot’) region in the (x,z) plane wherein inflected û profiles appear is computed and qualitatively related to observations of ‘breakdown’ and transition to turbulence in the flow over a flat plate. The maximum $\vcirc$([xcirc ],ŷ,$\zcirc$,$\tcirc$) increases monotonically to infinity as $\tcirc$ → $\tcirc$s.


2019 ◽  
Vol 24 (2) ◽  
Author(s):  
Lidiane Fernanda Jochem ◽  
Diego Aponte ◽  
Marilda Barra Bizinotto ◽  
Janaíde Cavalcante Rocha

ABSTRACT This paper examines the suitability of partially replacing natural aggregate, sand, (NA) with recycled concrete aggregate (RCA) or lightweight aggregate (LWA) in mortars, under the hypothesis that pre-wetting aggregates would produce improvement in mortar properties. Fresh mortar properties such as density, entrained air content, consistency and heat of hydration, as well as hardened mortar properties such as dry density, compressive and flexural strength, and dimensional instability at 0% and 100% saturation were determined. The results show that mortars made with natural aggregate (75%) and recycled concrete aggregate (25%) have similar properties to mortars made with only natural aggregate (100%) and that pre-wetting the aggregates does not influence the properties of mortars significantly. Therefore, partial replacement with recycled concrete aggregate is a viable alternative for producing mortar.


Sign in / Sign up

Export Citation Format

Share Document