Effects of time discretization on wave propagation

Author(s):  
C. B. Vreugdenhil
2001 ◽  
Vol 09 (03) ◽  
pp. 1175-1201 ◽  
Author(s):  
E. BÉCACHE ◽  
P. JOLY ◽  
C. TSOGKA

We design a new and efficient numerical method for the modelization of elastic wave propagation in domains with complex topographies. The main characteristic is the use of the fictitious domain method for taking into account the boundary condition on the topography: the elastodynamic problem is extended in a domain with simple geometry, which permits us to use a regular mesh. The free boundary condition is enforced introducing a Lagrange multiplier, defined on the boundary and discretized with a nonuniform boundary mesh. This leads us to consider the first-order velocity-stress formulation of the equations and particular mixed finite elements. These elements have three main nonstandard properties: they take into account the symmetry of the stress tensor, they are compatible with mass lumping techniques and lead to explicit time discretization schemes, and they can be coupled with the Perfectly Matched Layer technique for the modeling of unbounded domains. Our method permits us to model wave propagation in complex media such as anisotropic, heterogeneous media with complex topographies, as it will be illustrated by several numerical experiments.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Sign in / Sign up

Export Citation Format

Share Document