Trends in Sulfate, Base Cations and H+ Concentrations in Bulk Precipitation and Throughfall at Integrated Monitoring Sites in Finland 1989–1995

Author(s):  
Liisa Ukonmaanaho ◽  
Michael Starr ◽  
Tuija Ruoho-Airola
2019 ◽  
Vol 59 (1) ◽  
Author(s):  
Jonas Šakalys ◽  
Kęstutis Kvietkus ◽  
Inga Garbarienė ◽  
Andriejus Urba

The results of the long-term study of atmospheric mercury concentrations in the rain water carried out at the Aukštaitija and Žemaitija integrated monitoring stations are presented in this work. The bulk precipitation samples at both stations were collected every week during the 2007–2017 period. The mercury measurement method is based on the absorption of radiation by mercury vapour at the 253.7 nm line. The monthly samples of precipitation after preparation were analysed using a mercury analyzer ‘Gardis’ developed at our institution. The average annual concentrations, deposition amounts and trends of mercury in the precipitation over the period of 2007–2017 were analysed. The tendency of average monthly mercury concentrations in the precipitation at the Žemaitija station was continuously increasing before 2011, however, after 2012 it has a decreasing tendency which was contrary to that at the Aukštaitija station. At the same time, the tendencies of average monthly amounts of mercury deposited with precipitation showed decreasing amounts, especially at the Žemaitija station. Explanation of the above-mentioned phenomenon is complicated and the main reason is very changeable air mass trajectories and irregularity of precipitation.


Author(s):  
Ting-Che Chuang ◽  
Min Liu ◽  
Yueh-Hsien Lin ◽  
Yong-Zen Haung ◽  
Chien-Wen Yang

Author(s):  
Sima Ajdar qizi Askerova

Monitoring of sea water condition is one of major requirements for carrying out the reliable ecological control of water environment. Monitoring networks contain such elements as sea buoys, beacons, etc. and are designated for measuringvarious hydrophysical parameters, including salinity of sea water. Development of specialized network and a separate buoy system for measuring thesea water salinity at different depths makes it possible to determine major regularities of processes of pollution and self-recovery of the sea waters. The article describes the scientific and methodological basics for development of this specialized network and questions of its optimal construction. It is well-known that at a depth of 30-45 m of the Caspian Sea salinity decreases and then at a depth of 45-60 m salinity is fully recovered. The mentioned changes of salinity at the relatively upper layer of sea waters is of special interest for studying the effect of ocean-going processes on the climate forming in the Caspian area. In terms of informativeness of measurements of surface waters salinity, the most informative is a layer ata 30-60 m depth, where inversion and recovery of salinity take place. It is shown that in most informative subrange of measurements, i. e. at a depth of 30-60 m optimization of regime of measurements complex should be carried out in order to increase the effectiveness of held researches. It is shown that at a depth of 35-50 m choice of the optimum regime of measurements makes it possible to obtain the maximum amount of information.


1993 ◽  
Author(s):  
Gabor Karsai ◽  
Samir Padalkar ◽  
Hubertus Franke ◽  
Janos Sztipanovits

1988 ◽  
Vol 19 (2) ◽  
pp. 99-120 ◽  
Author(s):  
A. Lepistö ◽  
P. G. Whitehead ◽  
C. Neal ◽  
B. J. Cosby

A modelling study has been undertaken to investigate long-term changes in surface water quality in two contrasting forested catchments; Yli-Knuutila, with high concentrations of base cations and sulphate, in southern Finland; and organically rich, acid Liuhapuro in eastern Finland. The MAGIC model is based on the assumption that certain chemical processes (anion retention, cation exchange, primary mineral weathering, aluminium dissolution and CO2 solubility) in catchment soils are likely keys to the responses of surface water quality to acidic deposition. The model was applied for the first time to an organically rich catchment with high quantities of humic substances. The historical reconstruction of water quality at Yli-Knuutila indicates that the catchment surface waters have lost about 90 μeq l−1 of alkalinity in 140 years, which is about 60% of their preacidification alkalinity. The model reproduces the declining pH levels of recent decades as indicated by paleoecological analysis. Stream acidity trends are investigated assuming two scenarios for future deposition. Assuming deposition rates are maintained in the future at 1984 levels, the model indicates that stream pH is likely to continue to decline below presently measured levels. A 50% reduction in deposition rates would likely result in an increase in pH and alkalinity of the stream, although not to estimated preacidification levels. Because of the high load of organic acids to the Liuhapuro stream it has been acid before atmospheric pollution; a decline of 0.2 pH-units was estimated with increasing leaching of base cations from the soil despite the partial pH buffering of the system by organic compounds.


1992 ◽  
Vol 23 (1) ◽  
pp. 13-26 ◽  
Author(s):  
W. H. Hendershot ◽  
L. Mendes ◽  
H. Lalande ◽  
F. Courchesne ◽  
S. Savoie

In order to determine how water flowpath controls stream chemistry, we studied both soil and stream water during spring snowmelt, 1985. Soil solution concentrations of base cations were relatively constant over time indicating that cation exchange was controlling cation concentrations. Similarly SO4 adsorption-desorption or precipitation-dissolution reactions with the matrix were controlling its concentrations. On the other hand, NO3 appeared to be controlled by uptake by plants or microorganisms or by denitrification since their concentrations in the soil fell abruptly as snowmelt proceeded. Dissolved Al and pH varied vertically in the soil profile and their pattern in the stream indicated clearly the importance of water flowpath on stream chemistry. Although Al increased as pH decreased, the relationship does not appear to be controlled by gibbsite. The best fit of calculated dissolved inorganic Al was obtained using AlOHSO4 with a solubility less than that of pure crystalline jurbanite.


Sign in / Sign up

Export Citation Format

Share Document