Modeling Water Quality in Distribution Systems

Author(s):  
Lewis A. Rossman
2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Arie Herlambang

In the event of natural disasters such as earthquakes, tsunamis, landslides, floods and droughts, water occupies a key role in disaster relief. The presence of water is important for drinking, cooking and support the refugee areas of environmental sanitation and avoiding disaster victims of diseases waterborn disease. Water problem in disaster conditions may occur partly as a result: the disturbance of water sources because change of water quality, to become turbid or salty, the destruction of a piping system, treatment plant damage, disruption of distribution systems, or the scarcity of water in evacuation areas. Introduction of water quality becomes important to determine which process technology will be used and saved investments in emergency conditions. Priority handling of clean water usually comes first in the refugee areas with communal system, because the need of water for bathing, washing and toilet is big enough, while for a drink in the early events during disaster dominated by bottled water, but for their long-term, they have to boil water. For remote areas and difficult to reach individuals who usually use  system more simple and easily operated. Water Supply Technology for emergency response has the characteristic 1). Able to operate with all sorts of water conditions (flexible adaptable), 2). Can be operated easily, 3). Does not require much maintenance, 4). Little use of chemicals, and 5). Portable and easy removable (Mobile System). Keywords :  Water Quality, Water Treatment Technology, Drinking Water, Emergency Response, filtration, ceramic filtration, Ultra filtration, Reverse Osmosis, Ultraviolet Sterilizer, Ozonizer, Disinfection.


2017 ◽  
Vol 2017 (4) ◽  
pp. 5598-5617
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Qiuchen Dong ◽  
Yan Li ◽  
Dingyi Cai ◽  
...  

2007 ◽  
Vol 55 (5) ◽  
pp. 161-168 ◽  
Author(s):  
T.H. Heim ◽  
A.M. Dietrich

Pipe relining via in situ epoxy lining is used to remediate corroded plumbing or distribution systems. This investigation examined the effects on odour, TOC, THM formation and disinfectant demand in water exposed to epoxy-lined copper pipes used for home plumbing. The study was conducted in accordance with the Utility Quick Test, a migration/leaching method for utilities to conduct sensory analysis of materials in contact with drinking water. The test was performed using water with no disinfectant and levels of chlorine and monochloramines representative of those found in the distribution system. Panelists repeatedly and consistently described a “plastic/adhesive/putty” odour in the water from the pipes. The odour intensity remained relatively constant for each of two subsequent flushes. Water samples stored in the epoxy-lined pipes showed a significant increase in the leaching of organic compounds (as TOC), and this TOC was demonstrated to react with free chlorine to form trichloromethane. Water stored in the pipes also showed a marked increase in disinfectant demand relative to the water stored in glass control flasks. A study conducted at a full scale installation at an apartment demonstrated that after installation and regular use, the epoxy lining did not yield detectable differences in water quality.


2001 ◽  
Vol 1 (4) ◽  
pp. 237-245 ◽  
Author(s):  
V. Gauthier ◽  
B. Barbeau ◽  
R. Millette ◽  
J.-C. Block ◽  
M. Prévost

The concentrations of suspended particles were measured in the drinking water of two distribution systems, and the nature of these particles documented. The concentrations of particulate matter were invariably found to be small (maximum 350 μg/L). They are globally in the very low range in comparison with dissolved matter concentrations, which are measured in several hundreds of mg/L. Except during special water quality events, such as turnover of the raw water resource, results show that organic matter represents the most important fraction of suspended solids (from 40 to 76%) in treated and distributed water. Examination of the nature of the particles made it possible to develop several hypotheses about the type of particles penetrating Montreal's distribution system during the turnover period (algae skeleton, clays). These particles were found to have been transported throughout the distribution systems quite easily, and this could result in the accumulation of deposits if their surface charge were ever even slightly destabilised, or if the particles were to penetrate the laminar flow areas that are fairly typical of remote locations in distribution systems.


2006 ◽  
Vol 54 (3) ◽  
pp. 41-48 ◽  
Author(s):  
M. Batté ◽  
C. Féliers ◽  
P. Servais ◽  
V. Gauthier ◽  
J.-C. Joret ◽  
...  

Biofilm and microbial water quality were studied in four middle size full-scale distribution systems (DS) in France serving 5,000–30,000 inhabitants (maximum residence time 23–160 h) through three sampling campaigns over 1 year. Three of these DSs were chosen because of a quite high occurrence of bacterial indicators (i.e. total coliforms), the last DS was considered as a reference. Biofilm was studied on cast iron coupons incubated for more than 1 month in devices continuously fed with water from the DS in conditions imitating those met in DS. The devices were located at different points (4–6) along each DS. The abundance of bacteria in biofilm was estimated by heterotrophic plate counts (HPC) after detachment of the biofilm from the support by sonication. Microbiological water quality was estimated in parallel; analysis of total coliforms, E. coli, enterococci and anaerobic sulphide-reducing bacteria spores (ASRB spores) was carried out in biofilm and water. Over the period of the study, 171 water samples and 57 biofilm samples were collected. Over these 171 waters, 19 (11%) were positive for at least one of the measured indicators while two biofilm samples were positive (3.5%). Significant differences were observed in the levels of contamination between the DSs. High residence time in the DS, low disinfectant residual and high temperature increased the risk of indicator occurrence in the water phase. Due to the low number of biofilm samples positive for bacterial indicators, the data collected in the present study did not allow observation of a direct association between biofilm and water contaminations, even if the occurrence of indicators in water appeared on DSs with the highest density of biofilm (HPC).


2018 ◽  
Vol 4 (12) ◽  
pp. 2080-2091 ◽  
Author(s):  
Isabel Douterelo ◽  
Carolina Calero-Preciado ◽  
Victor Soria-Carrasco ◽  
Joby B. Boxall

This research highlights the potential of whole metagenome sequencing to help protect drinking water quality and safety.


Sign in / Sign up

Export Citation Format

Share Document