Deciphering the Biosynthetic Pathways of Bioactive Compounds In Planta Using Omics Approaches

Author(s):  
Hsiao-Hang Chung ◽  
Yi-Chang Sung ◽  
Lie-Fen Shyur
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Valeria Di Dato ◽  
Federica Di Costanzo ◽  
Roberta Barbarinaldi ◽  
Anna Perna ◽  
Adrianna Ianora ◽  
...  

2019 ◽  
Vol 17 (5) ◽  
pp. 1027-1036 ◽  
Author(s):  
Hsiao-Ching Lin ◽  
Ranuka T. Hewage ◽  
Yuan-Chun Lu ◽  
Yit-Heng Chooi

The club fungi, Basidioycota, produce a wide range of bioactive compounds. Here, we describe recent studies on the biosynthetic pathways and enzymes of bioactive natural products from these fungi.


2011 ◽  
Vol 7 ◽  
pp. 1622-1635 ◽  
Author(s):  
Jan-Christoph Kehr ◽  
Douglas Gatte Picchi ◽  
Elke Dittmann

Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future.


2021 ◽  
Vol 6 (1) ◽  
pp. 165-189
Author(s):  
Brenda Hernández-Sánchez ◽  
◽  
Ericka Santacruz-Juárez ◽  
David Moore ◽  
Carmen Sánchez ◽  
...  

Viral infections have affected human health, causing critical pandemics and mortality worldwide. Viruses can also cause enormous economic problems for society globally. Bioactive compounds isolated from fungi (both edible and nonedible) have shown potential activity against viruses. In this review, we describe the fungal natural compounds that have exhibited capability to inhibit some human pathogenic viruses, such as human immunodeficiency virus, dengue virus, herpes simplex virus, bovine herpes virus, influenza virus, respiratory syndrome virus, hepatitis virus among others. We focused on the biosynthetic pathways of fungal bioactive compounds and addressed the current knowledge about their antiviral mechanisms of action and specific targets. Fungal bioactive compounds are able to inhibit viral reproduction, blocking viral penetration, replication or translation as well as integrase or protease action. Fungal compounds able to inhibit protease such as. ganodermatriol, ergosterol, terpenoids, ganoderic acid GS-2, ganoderiol, sterigmatocystin, emericellin, cordycepin, ergosterol peroxide, myristic acid among others, may have a significant value to society at present, as they may have the potential to treat severe viral respiratory infections. Fungi represent a potential natural source of bioactive molecules that can be exploited for treating viral infections, which represent one of the main causes of disease worldwide. However, extensive investigations on clinical trials are required for the introduction of new antiviral agents into the market.


2021 ◽  
Vol 9 (12) ◽  
pp. 2485
Author(s):  
Andree S. George ◽  
Maria T. Brandl

Outbreaks of produce-associated foodborne illness continue to pose a threat to human health worldwide. New approaches are necessary to improve produce safety. Plant innate immunity has potential as a host-based strategy for the deactivation of enteric pathogens. In response to various biotic and abiotic threats, plants mount defense responses that are governed by signaling pathways. Once activated, these result in the release of reactive oxygen and nitrogen species in addition to secondary metabolites that aim at tempering microbial infection and pest attack. These phytochemicals have been investigated as alternatives to chemical sanitization, as many are effective antimicrobial compounds in vitro. Their antagonistic activity toward enteric pathogens may also provide an intrinsic hurdle to their viability and multiplication in planta. Plants can detect and mount basal defenses against enteric pathogens. Evidence supports the role of plant bioactive compounds in the physiology of Salmonella enterica, Escherichia coli, and Listeria monocytogenes as well as their fitness on plants. Here, we review the current state of knowledge of the effect of phytochemicals on enteric pathogens and their colonization of plants. Further understanding of the interplay between foodborne pathogens and the chemical environment on/in host plants may have lasting impacts on crop management for enhanced microbial safety through translational applications in plant breeding, editing technologies, and defense priming.


2011 ◽  
Vol 435 (3) ◽  
pp. 589-595 ◽  
Author(s):  
Dana Morrone ◽  
Matthew L. Hillwig ◽  
Matthew E. Mead ◽  
Luke Lowry ◽  
D. Bruce Fulton ◽  
...  

The evolution of natural product biosynthetic pathways can be envisioned to occur via a number of mechanisms. In the present study we provide evidence that latent plasticity plays a role in such metabolic evolution. In particular, rice (Oryza sativa) produces both ent- and syn-CPP (copalyl diphosphate), which are substrates for downstream diterpene synthases. In the present paper we report that several members of this enzymatic family exhibit dual reactivity with some pairing of ent-, syn- or normal CPP stereochemistry. Evident plasticity was observed, as a previously reported ent-sandaracopimaradiene synthase also converts syn-CPP into syn-labda-8(17),12E,14-triene, which can be found in planta. Notably, normal CPP is not naturally found in rice. Thus the presence of diterpene synthases that react with this non-native metabolite reveals latent enzymatic/metabolic plasticity, providing biochemical capacity for utilization of such a novel substrate (i.e. normal CPP) which may arise during evolution, the implications of which are discussed.


2021 ◽  
Vol 85 (1) ◽  
pp. 8-12
Author(s):  
Tomohiro Suzuki

Abstract Mushroom-forming fungi produce unique bioactive compounds that have potential applications as medicines, supplements, and agrochemicals. Thus, it is necessary to clarify the biosynthetic pathways of these compounds using genome and transcriptome analyses. This review introduces some of our research on bioactive compounds isolated from mushrooms, as well as genetic analysis with next-generation sequencing.


Author(s):  
Satish Kulasekaran ◽  
Sergio Cerezo-Medina ◽  
Claudia Harflett ◽  
Charlotte Lomax ◽  
Femke de Jong ◽  
...  

Abstract The salicinoids are phenolic glycosides that are characteristic secondary metabolites of the Salicaceae, particularly willows and poplars. Despite the well-known pharmacology of salicin, that led to the development of aspirin >100 years ago, the biosynthetic pathways leading to salicinoids have yet to be defined. Here, we describe the identification, cloning, and biochemical characterization of SpUGT71L2 and SpUGT71L3—isozymic glycosyltransferases from Salix purpurea—that function in the glucosylation of ortho-substituted phenols. The best substrate in vitro was salicyl-7-benzoate. Its product, salicyl-7-benzoate glucoside, was shown to be endogenous in poplar and willow. Together they are inferred to be early intermediates in the biosynthesis of salicortin and related metabolites in planta. The role of this UDP-glycosyltransferase was confirmed via the metabolomic analysis of transgenic plants produced by RNAi knockdown of the poplar orthologue (UGT71L1) in the hybrid clone Populus tremula×P. alba, INRA 717-1B4.


Sign in / Sign up

Export Citation Format

Share Document