Computer Simulation of the Phase Separation of Polymeric Materials for Industrial Applications

Author(s):  
Takeshi Aoyagi
Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 773
Author(s):  
Ahmad Safwan Ismail ◽  
Mohammad Jawaid ◽  
Norul Hisham Hamid ◽  
Ridwan Yahaya ◽  
Azman Hassan

Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.


2021 ◽  
Author(s):  
Aliyu Yaro ◽  
Laminu Kuburi ◽  
Musa Abiodun Moshood

Abstract Polymeric materials are used in different industrial applications because they retain good environmental properties, low-cost, and easy to produce compared to conventional materials. This study investigated the effect of adding kaolin micro-filler (KF) on the mechanical properties of Luffa Fiber (LCF) reinforced polyester resin. Luffa cylindrica fiber treated with 5% NaOH, varied in weight fraction (5, 10, and 15%wt) was used to reinforce unsaturated polyester resin using hand lay-up method, whereas for the hybrid composite kaolin filler were kept constant at 6wt% fraction while the fibers varied as in the mono-reinforced composite. The samples were machined for mechanical and microstructural analysis. Analysis of the result revealed that the addition of kaolin has enhanced greatly the mechanical properties of Luffa-fibre based composites. The result reveal of the microstructure analysis, shows that there is an improvement in fiber-matrix adhesion.


Recycling ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 32 ◽  
Author(s):  
Grigorescu ◽  
Grigore ◽  
Iancu ◽  
Ghioca ◽  
Ion

Considering that the large quantity of waste electrical and electronic equipment plastics generated annually causes increasing environmental concerns for their recycling and also for preserving of raw material resources, decreasing of energy consumption, or saving the virgin materials used, the present challenge is considered to be the recovery of individual polymers from waste electrical and electronic equipment. This study aims to provide an update of the main identification methods of waste electrical and electronic equipment such as spectroscopic fingerprinting, thermal study, and sample techniques (like identification code and burning test), and the characteristic values in the case of the different analyses of the polymers commonly used in electrical and electronic equipment. Additionally, the quality of the identification is very important, as, depending on this, new materials with suitable properties can be obtained to be used in different industrial applications. The latest research in the field demonstrated that a complete characterization of individual WEEE (Waste Electric and Electronic Equipment) components is important to obtain information on the chemical and physical properties compared to the original polymers and their compounds. The future directions are heading towards reducing the costs by recycling single polymer plastic waste fractions that can replace virgin plastic at a ratio of almost 1:1.


2007 ◽  
Vol 126 (15) ◽  
pp. 154509 ◽  
Author(s):  
Iulia Podariu ◽  
Amitabha Chakrabarti

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Bichitra Nanda Sahoo ◽  
Balasubramanian Kandasubramanian ◽  
Amrutha Thomas

The present work reports a simple and effective way to produce hydrophobic foams with polyvinylidene fluoride (PVDF) and TiO2 by using a phase separation technique. This method involved the phase separation during the deposition of PVDF from its DMF solution with nonsolvent water in the presence of TiO2. The surface morphology of hydrophobic surfaces was characterized by Field Emission Scanning Electron Microscope (FESEM). The maximum water contact angle of 129° was observed. The results confirm that the surface texture of polymer composite exhibits mixture of microporous and nanoporous structure. The impact of TiO2 on the wettability property of polymer composite has been studied. The proposed methodology might find applications in the preparation of hydrophobic surfaces for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document