A Low-Carbon Growth Strategy for India: Synergies from Oxy-Combustion, Carbon Capture, and ECBM

Author(s):  
Thomas Weber
2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
Vol 3 ◽  
Author(s):  
Eric Dunford ◽  
Robert Niven ◽  
Christopher Neidl

Carbon dioxide removal (CDR) will be required to keep global temperature rise below 2°C based on IPCC models. Greater adoption of carbon capture utilization and storage (CCUS) technologies will drive demand for CDR. Public procurement of low carbon materials is a powerful and under-utilized tool for accelerating the development and of CCUS through a targeted and well-regulated approach. The policy environment is nascent and presents significant barriers for scaling and guiding emerging technology solutions. The concrete sector has unique attributes that make it ideally suited for large-scale low-carbon public procurement strategies. This sector offers immediate opportunities to study the efficacy of a supportive policy and regulatory environment in driving the growth of CCUS solutions.


2021 ◽  
Vol 61 (2) ◽  
pp. 466
Author(s):  
Prakash Sharma ◽  
Benjamin Gallagher ◽  
Jonathan Sultoon

Australia is in a bind. It is at the heart of the pivot to clean energy: it contains some of the world’s best solar irradiance and vast potential for large-scale carbon capture and storage; it showed the world the path forward with its stationary storage flexibility at the much vaunted Hornsdale power reserve facility; and it moved quickly to capitalise on low-carbon hydrogen production. Yet it remains one of the largest sources for carbon-intensive energy exports in the world. The extractive industries are still delivering thermal coal for power generation and metallurgical coal for carbon-intensive steel making in Asian markets. Even liquefied natural gas’s green credentials are being questioned. Are these two pathways compatible? The treasury and economy certainly benefit. But there is a huge opportunity to redress the source of those funds and jobs, while fulfilling the aspirations to reach net zero emissions by 2050. In our estimates, the low-carbon hydrogen economy could grow to become so substantial that 15% of all energy may be ultimately ‘carried’ by hydrogen by 2050. It is certainly needed to keep the world from breaching 2°C. Can Australia master the hydrogen trade? It is believed that it has a very good chance. Blessed with first-mover investment advantage, and tremendous solar and wind resourcing, Australia is already on a pathway to become a producer of green hydrogen below US$2/kg by 2030. How might it then construct a supply chain to compete in the international market with established trading partners and end users ready to renew old acquaintances? Its route is assessed to mastery of the hydrogen trade, analyse critical competitors for end use and compare costs with other exporters of hydrogen.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3840
Author(s):  
Alla Toktarova ◽  
Ida Karlsson ◽  
Johan Rootzén ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
...  

The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO2 emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1268 ◽  
Author(s):  
Ana-Maria Cormos ◽  
Simion Dragan ◽  
Letitia Petrescu ◽  
Vlad Sandu ◽  
Calin-Cristian Cormos

Decarbonization of energy-intensive systems (e.g., heat and power generation, iron, and steel production, petrochemical processes, cement production, etc.) is an important task for the development of a low carbon economy. In this respect, carbon capture technologies will play an important role in the decarbonization of fossil-based industrial processes. The most significant techno-economic and environmental performance indicators of various fossil-based industrial applications decarbonized by two reactive gas-liquid (chemical scrubbing) and gas-solid CO2 capture systems are calculated, compared, and discussed in the present work. As decarbonization technologies, the gas-liquid chemical absorption and more innovative calcium looping systems were employed. The integrated assessment uses various elements, e.g., conceptual design of decarbonized plants, computer-aided tools for process design and integration, evaluation of main plant performance indexes based on industrial and simulation results, etc. The overall decarbonization rate for various assessed applications (e.g., power generation, steel, and cement production, chemicals) was set to 90% in line with the current state of the art in the field. Similar non-carbon capture plants are also assessed to quantify the various penalties imposed by decarbonization (e.g., increasing energy consumption, reducing efficiency, economic impact, etc.). The integrated evaluations exhibit that the integration of decarbonization technologies (especially chemical looping systems) into key energy-intensive industrial processes have significant advantages for cutting the carbon footprint (60–90% specific CO2 emission reduction), improving the energy conversion yields and reducing CO2 capture penalties.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3599 ◽  
Author(s):  
Martinez-Fernandez ◽  
deLlano-Paz ◽  
Calvo-Silvosa ◽  
Soares

Carbon mitigation is a major aim of the power-generation regulation. Renewable energy sources for electricity are essential to design a future low-carbon mix. In this work, financial Modern Portfolio Theory (MPT) is implemented to optimize the power-generation technologies portfolio. We include technological and environmental restrictions in the model. The optimization is carried out in two stages. Firstly, we minimize the cost and risk of the generation portfolio, and afterwards, we minimize its emission factor and risk. By combining these two results, we are able to draw an area which can be considered analogous to the Capital Market Line (CML) used by the Capital Asset Pricing model (CAPM). This area delimits the set of long-term power-generation portfolios that can be selected to achieve a progressive decarbonisation of the mix. This work confirms the relevant role of small hydro, offshore wind, and large hydro as preferential technologies in efficient portfolios. It is necessary to include all available renewable technologies in order to reduce the cost and the risk of the portfolio, benefiting from the diversification effect. Additionally, carbon capture and storage technologies must be available and deployed if fossil fuel technologies remain in the portfolio in a low-carbon approach.


2013 ◽  
Vol 807-809 ◽  
pp. 783-789 ◽  
Author(s):  
Di Zhou ◽  
Cui Ping Liao ◽  
Peng Chun Li ◽  
Ying Huang

CCS (Carbon Capture and Storage) is the only technology available to achieve a deep cut in CO2emissions from large-scale fossil fuel usage. Although Guangdong Province has less heavy industries and higher reliance on energy import compared with many other provinces in China, CCS is still essential for the low-carbon development in the province. This is because fossil fuel energy is now and will be in the foreseeable future the major energy in Guangdong. CCS may have other benefits such as helping energy security and bring new business opportunities. The feasibility of CCS development in Guangdong is ensured by the existence of sufficient CO2storage capacity in offshore sedimentary basins in the northern South China Sea. A safe CO2storage is achievable as long as the selection of storage sites and the storage operations are in restrict quality control. The increased cost and energy penalty associated with CCS could be reduced through technical R&D, the utilization of captured CO2, and the utilization of infrastructure of offshore depleted oil fields. Fossil fuel energy plus CCS should be regarded as a new type of clean energy and deserves similar incentive policies that have been applied to other clean energies such as renewables and nuclear.


Sign in / Sign up

Export Citation Format

Share Document