Effect of Biochar Amendment on Nitrate Leaching in Two Soil Types of India

Author(s):  
Anil K. Kanthle ◽  
N. K. Lenka ◽  
K. Tedia
2012 ◽  
Vol 55 (4) ◽  
pp. 333-345 ◽  
Author(s):  
Q Wang ◽  
K Cameron ◽  
G Buchan ◽  
L Zhao ◽  
EH Zhang ◽  
...  

1998 ◽  
Vol 15 (6) ◽  
pp. 457-466 ◽  
Author(s):  
JØrgen Mortensen ◽  
Keld Hauge Nielsen ◽  
Uffe JØrgensen

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 707 ◽  
Author(s):  
Miha Curk ◽  
Matjaž Glavan ◽  
Marina Pintar

Groundwater pollution with nitrate of agricultural origin is a major problem in many countries. A great deal of effort is focused on finding ways to reduce leaching from agricultural land. In this study, different land management scenarios were evaluated with the SWAT model in order to determine which are the most effective in reducing nitrate leaching on specific soil types in the Krška kotlina alluvial plain (Slovenia). The area is very important both for agriculture production and drinking water resources. The model was calibrated for three soil moisture field trial sites, each representing one major soil type of the area. Simulated soil moisture values were in good agreement with the observed values (PBIAS (percent bias) ±25%). Of the nine land management scenarios that were evaluated, vegetable rotation caused the most nitrate leaching on all soil types, but it fared better on Cambisol than on Fluvisol. Orchards on the other hand leached the least amount of nitrate, but also fared better on Cambisol. Presented studies should be considered as a preliminary stage in the study of nitrate pollution in the investigated area. Results show that nitrate leaching varies for different land management scenarios on different soil types. Further work should concentrate on field trials to evaluate the impacts of reduced fertilization on nitrate leaching and both crop yield and quality on different soil types.


Author(s):  
Cecile De Klein ◽  
Jim Paton ◽  
Stewart Ledgard

Strategic de-stocking in winter is a common management practice on dairy farms in Southland, New Zealand, to protect the soil against pugging damage. This paper examines whether this practice can also be used to reduce nitrate leaching losses. Model analyses and field measurements were used to estimate nitrate leaching losses and pasture production under two strategic de-stocking regimes: 3 months off-farm or 5 months on a feed pad with effluent collected and applied back to the land. The model analyses, based on the results of a long-term farmlet study under conventional grazing and on information for an average New Zealand farm, suggested that the 3- or 5-month de-stocking could reduce nitrate leaching losses by about 20% or 35-50%, respectively compared to a conventional grazing system. Field measurements on the Taieri Plain in Otago support these findings, although the results to date are confounded by drought conditions during the 1998 and 1999 seasons. The average nitrate concentration of the drainage water of a 5-month strategic de-stocking treatment was about 60% lower than under conventional grazing. Pasture production of the 5-month strategic de-stocking regime with effluent return was estimated based on data for apparent N efficiency of excreta patches versus uniformlyspread farm dairy effluent N. The results suggested that a strategic de-stocking regime could increase pasture production by about 2 to 8%. A cost/ benefit analysis of the 5-month de-stocking system using a feed pad, comparing additional capital and operational costs with additional income from a 5% increase in DM production, show a positive return on capital for an average New Zealand dairy farm. This suggests that a strategic destocking system has good potential as a management tool to reduce nitrate leaching losses in nitrate sensitive areas whilst being economically viable, particularly on farms where an effluent application system or a feed pad are already in place. Keywords: dairying, feed pads, nitrate leaching, nitrogen efficiency, productivity, strategic de-stocking


2008 ◽  
Vol 4 (1) ◽  
pp. 1-26
Author(s):  
Gábor Kalácska

Research was performed on the friction, wear and efficiency of plastic gears made of modern engineering polymers and their composites both in a clean environment (adhesive sliding surfaces) and in an environment contaminated with solid particles and dust (abrasive), with no lubrication at all. The purpose is to give a general view about the results of abrasive wear tests including seven soil types as abrasive media. At the first stage of the research silicious sand was applied between the meshing gears and the wear of plastic and steel gears was evaluated and analyzed from the point of different material properties (elongation at break, hardness, yield stress, modulus of elasticity) and its combinations. The different correlations between the experienced wear and material features are also introduced. At the second stage of the project the abrasive sand was replaced with different physical soil types. The abrasive wear of gears is plotted in the function of soil types. The results highlight on the considerable role of physical soil types on abrasive wear resistance and the conclusions contain the detailed wear resistance. The results offer a new tribology database for the operation and maintenance of agricultural machines with the opportunity of a better material selection according to the dominant soil type. This can finally result longer lifetime and higher reliability of wearing plastic/steel parts.


2010 ◽  
Vol 18 (2) ◽  
pp. 175-180
Author(s):  
Rajesh K. Verma ◽  
Dharam Veer Yadav ◽  
Chandra Pal Singh ◽  
Archna Suman ◽  
Asha Gaur

Sign in / Sign up

Export Citation Format

Share Document