A Research Review on Energy Consumption of Different Frameworks in Mobile Cloud Computing

Author(s):  
Ramasubbareddy Somula ◽  
R. Sasikala
Author(s):  
Dr. Suma V

The mobile devices are termed to highly potential due to their capability of rendering services without being plugged to the electric grid. These device are becoming highly prominent due to their constant progress in computing as well as storing capacities and as they are very much closer to the users. Despites its advantages it still faces many problems due to the load balancing and energy consumption due to its limited battery limited and storage availability as some applications or the video downloading requires high storage facilities consuming majority of the energy in turn reducing the performance of the mobile devices. So as to improve the performance and the capability of the mobile devices the mobile cloud computing that integrates the mobile devices with the cloud paradigm has emerged as a promising paradigm. This enables the augmentation of the local resources for the mobile devices to enhance its capabilities in order to improve its functioning. This is basically done by proper offloading and resource allocation. The proposed method in the paper utilizes the optimal offloading strategy (Single and double strand offloading) and follows an Ant colony optimization based resource allocation for improving the functioning the mobile devices in terms of energy consumption and storage.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Rahul Yadav ◽  
Weizhe Zhang

Mobile cloud computing (MCC) provides various cloud computing services to mobile users. The rapid growth of MCC users requires large-scale MCC data centers to provide them with data processing and storage services. The growth of these data centers directly impacts electrical energy consumption, which affects businesses as well as the environment through carbon dioxide (CO2) emissions. Moreover, large amount of energy is wasted to maintain the servers running during low workload. To reduce the energy consumption of mobile cloud data centers, energy-aware host overload detection algorithm and virtual machines (VMs) selection algorithms for VM consolidation are required during detected host underload and overload. After allocating resources to all VMs, underloaded hosts are required to assume energy-saving mode in order to minimize power consumption. To address this issue, we proposed an adaptive heuristics energy-aware algorithm, which creates an upper CPU utilization threshold using recent CPU utilization history to detect overloaded hosts and dynamic VM selection algorithms to consolidate the VMs from overloaded or underloaded host. The goal is to minimize total energy consumption and maximize Quality of Service, including the reduction of service level agreement (SLA) violations. CloudSim simulator is used to validate the algorithm and simulations are conducted on real workload traces in 10 different days, as provided by PlanetLab.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Xing Liu ◽  
Chaowei Yuan ◽  
Zhen Yang ◽  
Enda Peng

Mobile cloud computing (MCC) combines cloud computing and mobile internet to improve the computational capabilities of resource-constrained mobile devices (MDs). In MCC, mobile users could not only improve the computational capability of MDs but also save operation consumption by offloading the mobile applications to the cloud. However, MCC faces the problem of energy efficiency because of time-varying channels when the offloading is being executed. In this paper, we address the issue of energy-efficient scheduling for wireless uplink in MCC. By introducing Lyapunov optimization, we first propose a scheduling algorithm that can dynamically choose channel to transmit data based on queue backlog and channel statistics. Then, we show that the proposed scheduling algorithm can make a tradeoff between queue backlog and energy consumption in a channel-aware MCC system. Simulation results show that the proposed scheduling algorithm can reduce the time average energy consumption for offloading compared to the existing algorithm.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4527
Author(s):  
Abid Ali ◽  
Muhammad Munawar Iqbal ◽  
Harun Jamil ◽  
Faiza Qayyum ◽  
Sohail Jabbar ◽  
...  

Restricted abilities of mobile devices in terms of storage, computation, time, energy supply, and transmission causes issues related to energy optimization and time management while processing tasks on mobile phones. This issue pertains to multifarious mobile device-related dimensions, including mobile cloud computing, fog computing, and edge computing. On the contrary, mobile devices’ dearth of storage and processing power originates several issues for optimal energy and time management. These problems intensify the process of task retaining and offloading on mobile devices. This paper presents a novel task scheduling algorithm that addresses energy consumption and time execution by proposing an energy-efficient dynamic decision-based method. The proposed model quickly adapts to the cloud computing tasks and energy and time computation of mobile devices. Furthermore, we present a novel task scheduling server that performs the offloading computation process on the cloud, enhancing the mobile device’s decision-making ability and computational performance during task offloading. The process of task scheduling harnesses the proposed empirical algorithm. The outcomes of this study enable effective task scheduling wherein energy consumption and task scheduling reduces significantly.


the demands of the present society transformed the world from 4G to 5G communication system. One of the primary focus of 5G technology is cloud computing, where the end users can get the unavailable services from the cloud. An exceptional type of cloud computing is Mobile Cloud Computing (MCC), where the end users are mobile devices. In the MCC, the resources at the mobile device are constrained or limited. The energy consumption during communication process of MCC is directly proportional to the amount of the data to be transmitted. In this paper, we propose a new method to reduce the energy consumption in the MCC. The simulation results consolidate the claim.


2020 ◽  
Vol 2 (1) ◽  
pp. 38-49
Author(s):  
Dr. Jennifer S. Raj

The mobile devices capabilities are found to be greater than before by utilizing the cloud services. There are various of service rendered by the cloud paradigm and the mobile devices usually allows the execution of the resource-intensive applications on the resource- constrained mobile device to be offloaded to the cloudlets that are resource rich thus enhancing the its processing capabilities. But accessing the cloud services within the minimum response time and energy consumption still remains as a serious research problem. So the proposed method put forth in the paper scopes in developing a frame work to choose the optimal cloud service provider. The frame work proposed is categorized into two stages where the initial stage engages the classifier to segregate the mobile device according to the fuzzy K-nearest neighbor and cultivates an improved computational offloading employing the Hidden Markov Model and ACO- ant colony optimization. The algorithm proffered is implemented in the MATLAB version 9.1 and the performance is evinced on the basis of the response time, energy consumption and the processing cost. The results obtained through the proposed method proves to provide an 89% better response time, 95 % better energy consumption and 50% enhanced processing cost compared to the few existing computational offloading methods put forth for the mobile cloud computing.


2020 ◽  
Vol 39 (6) ◽  
pp. 8285-8297
Author(s):  
V. Meena ◽  
Obulaporam Gireesha ◽  
Kannan Krithivasan ◽  
V.S. Shankar Sriram

Mobile Cloud Computing (MCC)’s rapid technological advancements facilitate various computational-intensive applications on smart mobile devices. However, such applications are constrained by limited processing power, energy consumption, and storage capacity of smart mobile devices. To mitigate these issues, computational offloading is found to be the one of the promising techniques as it offloads the execution of computation-intensive applications to cloud resources. In addition, various kinds of cloud services and resourceful servers are available to offload computationally intensive tasks. However, their processing speeds, access delays, computation capability, residual memory and service charges are different which retards their usage, as it becomes time-consuming and ambiguous for making decisions. To address the aforementioned issues, this paper presents a Fuzzy Simplified Swarm Optimization based cloud Computational Offloading (FSSOCO) algorithm to achieve optimum multisite offloading. Fuzzy logic and simplified swarm optimization are employed for the identification of high powerful nodes and task decomposition respectively. The overall performance of FSSOCO is validated using the Specjvm benchmark suite and compared with the state-of-the-art offloading techniques in terms of the weighted total cost, energy consumption, and processing time.


Sign in / Sign up

Export Citation Format

Share Document