Theoretical Analysis and Model Testing of the Deformation Characteristics and Failure Mechanism of a Blocking Airbag System in a Tunnel Under External Pressure

Author(s):  
Jing Chen ◽  
Shu-wang Yan ◽  
Li-qiang Sun ◽  
Rui-qing Lang
2013 ◽  
Vol 760-762 ◽  
pp. 2263-2266
Author(s):  
Kang Yong ◽  
Wei Chen

Beside the residual stresses and axial loads, other factors of pipe like ovality, moment could also bring a significant influence on pipe deformation under external pressure. The Standard of API-5C3 has discussed the influences of deformation caused by yield strength of pipe, pipe diameter and pipe thickness, but the factor of ovality degree is not included. Experiments and numerical simulations show that with the increasing of pipe ovality degree, the anti-deformation capability under external pressure will become lower, and ovality affecting the stability of pipe shape under external pressure is significant. So it could be a path to find out the mechanics relationship between ovality and pipe deformation under external pressure by the methods of numerical simulations and theoretical analysis.


2018 ◽  
Vol 110 (2) ◽  
pp. 289-297 ◽  
Author(s):  
Lijuan Wang ◽  
Kejing Yu ◽  
Diantang Zhang ◽  
Kun Qian

1971 ◽  
Vol 57 (2) ◽  
pp. 113-124 ◽  
Author(s):  
Clifford S. Patlak ◽  
Stanley I. Rapoport

When osmotic pressure across an artificial membrane, produced by a permeable electrically neutral solute on one side of it, is balanced by an external pressure difference so that there is no net volume flow across the membrane, it has been found that there will be a net flux of a second electrically neutral tracer solute, present at equal concentrations on either side of the membrane, in the direction that the "osmotic" solute diffuses. This has been ascribed to solute-solute interaction or drag between the tracer and the osmotic solutes. An alternative model, presented here, considers the membrane to have pores of different sizes. Under general assumptions, this "heteroporous" model will account for both the direction of net tracer flux and the observed linear dependence of unidirectional tracer fluxes on the concentration of the osmotic solute. The expressions for the fluxes of solutes and solvent are mathematically identical under the two models. An inequality is derived which must be valid if the solute interaction model and/or the heteroporous model can account for the data. If the inequality does not hold, then the heteroporous model alone cannot explain the data. It was found that the inequality holds for most published observations except when dextran is the osmotic solute.


2015 ◽  
Vol 55 (12) ◽  
pp. 2671-2677 ◽  
Author(s):  
Guanggao Chen ◽  
Xiaokang Liu ◽  
Zongtao Li ◽  
Yong Tang ◽  
Longsheng Lu ◽  
...  

1993 ◽  
Vol 37 (01) ◽  
pp. 77-85
Author(s):  
C. T. F. Ross ◽  
A. Palmer

A theoretical and experimental investigation into the general instability of nine swedge-stiffened circularcylinders under uniform external pressure is described. The investigation found that most of the vesselssuffered plastic general instability, and that initial out-of-roundness played a significant role in the magnitude of the elastic knockdown. The theoretical analysis was based on the finite-element method, and a thinness ratio is proposed from which one can determine a plastic reduction factor when more experimental results are available.


1982 ◽  
Vol 22 (05) ◽  
pp. 609-615 ◽  
Author(s):  
T. Kyogoku ◽  
K. Tokimasa ◽  
H. Nakanishi ◽  
T. Okazawa

Abstract This paper discusses a newly developed collapse testing machine that permits investigation of practical performances of oilwell casings. Although a theoretical performances of oilwell casings. Although a theoretical analysis has shown that "axial tension stress has no effect on collapse pressure in the elastic case," this theory is not applied to the design of casing string because of lack of useful experimental data or authorized recommendation. To investigate the effect of axial tension load, full-size commercial casings have been tested under combined loading of axial tension load and external pressure. From the experimental results, the theory mentioned was proved in the case of so-called high-collapse casing, which has been used widely in recent years. Also shown is the applicable d/h range, which is wider than API's elastic collapse range. If the results of this experiment were applied to the design of a casing program, an economical and safe one could be obtained. program, an economical and safe one could be obtained. Introduction Recently, improved drilling techniques have permitted deeper and deeper oil and gas wells. As well depth increases, steel pipes for well casings receive greater external pressure and axial tension load because of the weight of the casing string. High-collapse casing, which has higher collapse strength per unit weight, has become easily available. To select and to design casing for such wells properly and economically, estimating collapse strength of the casing under axial tension load is very important. Much research and many experiments concerning collapse problems on casing, drillpipe, and tubing has been conducted by 1939. A theoretical analysis showed that axial tension stress lowers the collapse pressure in the case of plastic collapse and that axial tension stress has no effect on collapse pressure in the elastic case. Although collapse tests under axial tension load simulating oilwell casing in service were conducted on 2-in.-OD tubings, the theory for the effect of axial tension stress in the elastic collapse had not been proved sufficiently. There are few published experimental proved sufficiently. There are few published experimental data on collapse strength under axial tension load. In 1968, API summarized the collapse data and showed the formulas for collapse pressure and for collapse pressure under axial tension stress in the case of plastic collapse. The purpose of our study is to show how the collapse strength of commercial casings with large OD's behaves under the axial tension load, especially in the case of elastic collapse. To test the large-size casings, a multipurpose collapse testing machine that can simulate the service condition of oilwell casing has been developed. Statement of the Problem The collapse strength of casings under combined external pressure and axial tension load may be calculated from pressure and axial tension load may be calculated from Ref. 6's Formula 1.1.5.1: ....................(1) SPEJ p. 609


2010 ◽  
Vol 37-38 ◽  
pp. 949-952
Author(s):  
Ming Bo Ding ◽  
Xing Chong Chen

The hysteretic and skeleton curves of load-displacement relation in pier top were got through the model-testing method of pile-soil interaction. The test model of pier was analyzed through static method-pushover. The complexity of subsoil property and constitutive relation of subsoil under reversal cyclic loading was considered. The model characteristics of energy dissipated, hysteretic property, ductility, failure mechanism and plastic energy of the pier under the horizontal reversal cyclic loading were researched.


1999 ◽  
Vol 121 (5) ◽  
pp. 487-493 ◽  
Author(s):  
M. Heil

This paper is concerned with the airway closure problem and investigates the quasi-steady deformation characteristics of strongly collapsed (buckled) airways occluded by liquid bridges of high surface tension. The airway wall is modeled as a thin-walled elastic shell, which deforms in response to an external pressure and to the compression due to the surface tension of the liquid bridge. The governing equations are solved numerically using physiological parameter values. It is shown that axisymmetric configurations are statically unstable, as are buckled tubes whose opposite walls are not in contact. The quasi-steady deformation characteristics of strongly collapsed airways whose walls are in opposite wall contact show a pronounced hysteresis during the collapse/reopening cycle. Buckling is shown to occur over a short axial length with moderate circumferential wavenumbers. Finally, further implications of the results for the airway collapse/reopening problem are discussed.


Sign in / Sign up

Export Citation Format

Share Document