Identifying MicroRNA Markers From Expression Data: A Network Analysis Based Approach

Author(s):  
Paramita Biswas ◽  
Anirban Mukhopadhyay
2020 ◽  
pp. 1052-1075 ◽  
Author(s):  
Dina Elsayad ◽  
A. Ali ◽  
Howida A. Shedeed ◽  
Mohamed F. Tolba

The gene expression analysis is an important research area of Bioinformatics. The gene expression data analysis aims to understand the genes interacting phenomena, gene functionality and the genes mutations effect. The Gene regulatory network analysis is one of the gene expression data analysis tasks. Gene regulatory network aims to study the genes interactions topological organization. The regulatory network is critical for understanding the pathological phenotypes and the normal cell physiology. There are many researches that focus on gene regulatory network analysis but unfortunately some algorithms are affected by data size. Where, the algorithm runtime is proportional to the data size, therefore, some parallel algorithms are presented to enhance the algorithms runtime and efficiency. This work presents a background, mathematical models and comparisons about gene regulatory networks analysis different techniques. In addition, this work proposes Parallel Architecture for Gene Regulatory Network (PAGeneRN).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2663-2663
Author(s):  
Matthew A Care ◽  
Stephen M Thirdborough ◽  
Andrew J Davies ◽  
Peter W.M. Johnson ◽  
Andrew Jack ◽  
...  

Abstract Purpose To assess whether comparative gene network analysis can reveal characteristic immune response signatures that predict clinical response in Diffuse large B-cell lymphoma (DLBCL). Background The wealth of available gene expression data sets for DLBCL and other cancer types provides a resource to define recurrent pathological processes at the level of gene expression and gene correlation neighbourhoods. This is of particular relevance in the context of cancer immune responses, where convergence onto common patterns may drive shared gene expression profiles. Where existing and novel immunotherapies harness the immune response for therapeutic benefit such responses may provide predictive biomarkers. Methods We independently analysed publically available DLBCL gene expression data sets and a wide compendium of gene expression data from diverse cancer types, and then asked whether common elements of cancer host response could be identified from resulting networks. Using 10 DLBCL gene expression data sets, encompassing 2030 cases, we established pairwise gene correlation matrices per data set, which were merged to generate median correlations of gene pairs across all data sets. Gene network analysis and unsupervised clustering was then applied to define global representations of DLBCL gene expression neighbourhoods. In parallel a diverse range of solid and lymphoid malignancies including; breast, colorectal, oesophageal, head and neck, non-small cell lung, prostate, pancreatic cancer, Hodgkin lymphoma, Follicular lymphoma and DLBCL were independently analysed using an orthogonal weighted gene correlation network analysis of gene expression data sets from which correlated modules across diverse cancer types were identified. The biology of resulting gene neighbourhoods was assessed by signature and ontology enrichment, and the overlap between gene correlation neighbourhoods and WGCNA derived modules associated with immune/host responses was analysed. Results Amongst DLBCL data, we identified distinct gene correlation neighbourhoods associated with the immune response. These included both elements of IFN-polarised responses, core T-cell, and cytotoxic signatures as well as distinct macrophage responses. Neighbourhoods linked to macrophages separated CD163 from CD68 and CD14. In the WGCNA analysis of diverse cancer types clusters corresponding to these immune response neighbourhoods were independently identified including a highly similar cluster related to CD163. The overlapping CD163 clusters in both analyses linked to diverse Fc-Receptors, complement pathway components and patterns of scavenger receptors potentially linked to alternative macrophage activation. The relationship between the CD163 macrophage gene expression cluster and outcome was tested in DLBCL data sets, identifying a poor response in CD163 -cluster high patients, which reached statistical significance in one data set (GSE10846). Notably, the effect of the CD163-associated gene neighbourhood which correlates with poor outcome post rituximab containing immunochemotherapy is distinct from the effect of IFNG-STAT1-IRF1 polarised cytotoxic responses. The latter represents the predominant immune response pattern separating cell of origin unclassifiable (Type-III) DLBCL from either ABC or GCB DLBCL subsets, and is associated with a trend toward positive outcome. Conclusion Comparative gene expression network analysis identifies common immune response signatures shared between DLBCL and other cancer types. Gene expression clusters linked to CD163 macrophage responses and IFNG-STAT1-IRF1 polarised cytotoxic responses are common patterns with apparent divergent outcome association. Disclosures Davies: CTI: Honoraria; GIlead: Consultancy, Honoraria, Research Funding; Mundipharma: Honoraria, Research Funding; Bayer: Research Funding; Takeda: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Roche: Honoraria, Research Funding; GSK: Research Funding; Pfizer: Honoraria; Celgene: Honoraria, Research Funding. Jack:Jannsen: Research Funding.


2012 ◽  
Vol 94 (4) ◽  
pp. 205-221 ◽  
Author(s):  
SHUANGGE MA ◽  
YUAN HUANG ◽  
JIAN HUANG ◽  
KUANGNAN FANG

SummaryHigh-throughput gene profiling studies have been extensively conducted, searching for markers associated with cancer development and progression. In this study, we analyse cancer prognosis studies with right censored survival responses. With gene expression data, we adopt the weighted gene co-expression network analysis (WGCNA) to describe the interplay among genes. In network analysis, nodes represent genes. There are subsets of nodes, called modules, which are tightly connected to each other. Genes within the same modules tend to have co-regulated biological functions. For cancer prognosis data with gene expression measurements, our goal is to identify cancer markers, while properly accounting for the network module structure. A two-step sparse boosting approach, called Network Sparse Boosting (NSBoost), is proposed for marker selection. In the first step, for each module separately, we use a sparse boosting approach for within-module marker selection and construct module-level ‘super markers’. In the second step, we use the super markers to represent the effects of all genes within the same modules and conduct module-level selection using a sparse boosting approach. Simulation study shows that NSBoost can more accurately identify cancer-associated genes and modules than alternatives. In the analysis of breast cancer and lymphoma prognosis studies, NSBoost identifies genes with important biological implications. It outperforms alternatives including the boosting and penalization approaches by identifying a smaller number of genes/modules and/or having better prediction performance.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nisar Wani ◽  
Debmalya Barh ◽  
Khalid Raza

Abstract Connecting transcriptional and post-transcriptional regulatory networks solves an important puzzle in the elucidation of gene regulatory mechanisms. To decipher the complexity of these connections, we build co-expression network modules for mRNA as well as miRNA expression profiles of breast cancer data. We construct gene and miRNA co-expression modules using the weighted gene co-expression network analysis (WGCNA) method and establish the significance of these modules (Genes/miRNAs) for cancer phenotype. This work also infers an interaction network between the genes of the turquoise module from mRNA expression data and hubs of the turquoise module from miRNA expression data. A pathway enrichment analysis using a miRsystem web tool for miRNA hubs and some of their targets, reveal their enrichment in several important pathways associated with the progression of cancer.


2015 ◽  
Vol 113 (03) ◽  
pp. 521-531 ◽  
Author(s):  
Riccardo Bellazzi ◽  
Felix Engel ◽  
Fulvia Ferrazzi

SummaryNetworks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.


BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Weijing Wang ◽  
Wenjie Jiang ◽  
Lin Hou ◽  
Haiping Duan ◽  
Yili Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document