Sentiment Analysis to Enhance Detection of Latent Astroturfing Groups in Online Social Networks

Author(s):  
Noora Alallaq ◽  
Muhmmad Al-khiza’ay ◽  
Mohammed Iqbal Dohan ◽  
Xin Han
2021 ◽  
pp. 1-13
Author(s):  
C S Pavan Kumar ◽  
L D Dhinesh Babu

Sentiment analysis is widely used to retrieve the hidden sentiments in medical discussions over Online Social Networking platforms such as Twitter, Facebook, Instagram. People often tend to convey their feelings concerning their medical problems over social media platforms. Practitioners and health care workers have started to observe these discussions to assess the impact of health-related issues among the people. This helps in providing better care to improve the quality of life. Dementia is a serious disease in western countries like the United States of America and the United Kingdom, and the respective governments are providing facilities to the affected people. There is much chatter over social media platforms concerning the patients’ care, healthy measures to be followed to avoid disease, check early indications. These chatters have to be carefully monitored to help the officials take necessary precautions for the betterment of the affected. A novel Feature engineering architecture that involves feature-split for sentiment analysis of medical chatter over online social networks with the pipeline is proposed that can be used on any Machine Learning model. The proposed model used the fuzzy membership function in refining the outputs. The machine learning model has obtained sentiment score is subjected to fuzzification and defuzzification by using the trapezoid membership function and center of sums method, respectively. Three datasets are considered for comparison of the proposed and the regular model. The proposed approach delivered better results than the normal approach and is proved to be an effective approach for sentiment analysis of medical discussions over online social networks.


2022 ◽  
pp. 255-263
Author(s):  
Chirag Visani ◽  
Vishal Sorathiya ◽  
Sunil Lavadiya

The popularity of the internet has increased the use of e-commerce websites and news channels. Fake news has been around for many years, and with the arrival of social media and modern-day news at its peak, easy access to e-platform and exponential growth of the knowledge available on social media networks has made it intricate to differentiate between right and wrong information, which has caused large effects on the offline society already. A crucial goal in improving the trustworthiness of data in online social networks is to spot fake news so the detection of spam news becomes important. For sentiment mining, the authors specialise in leveraging Facebook, Twitter, and Whatsapp, the most prominent microblogging platforms. They illustrate how to assemble a corpus automatically for sentiment analysis and opinion mining. They create a sentiment classifier using the corpus that can classify between fake, real, and neutral opinions in a document.


Big data as multiple sources and social media is one of them. Such data is rich in opinion of people and needs automated approach with Natural Language Processing (NLP) and Machine Learning (ML) to obtain and summarize social feedback. With ML as an integral part of Artificial Intelligence (AI), machines can demonstrate intelligence exhibited by humans. ML is widely used in different domains. With proliferation of Online Social Networks (OSNs), people of all walks of life exchange their views instantly. Thus they became platforms where opinions or people are available. In other words, social feedback on products and services are available. For instance, Twitter produces large volumes of such data which is of much use to enterprises to garner Business Intelligence (BI) useful to make expert decisions. In addition to the traditional feedback systems, the feedback (opinions) over social networks provide depth in the intelligence to revise strategies and policies. Sentiment analysis is the phenomenon which is employed to analyze opinions and classify them into positive, negative and neutral. Existing studies usually treated overall sentiment analysis and aspect-based sentiment analysis in isolation, and then introduce a variety of methods to analyse either overall sentiments or aspect-level sentiments, but not both. Usage of probabilistic topic model is a novel approach in sentiment analysis. In this paper, we proposed a framework for comprehensive analysis of overall and aspect-based sentiments. The framework is realized with aspect based topic modelling for sentiment analysis and ensemble learning algorithms. It also employs many ML algorithms with supervised learning approach. Benchmark datasets used in international SemEval conferences are used for empirical study. Experimental results revealed the efficiency of the proposed framework over the state of the art.


2021 ◽  
Author(s):  
Sarvesh Bhatnagar ◽  
Nitin Choubey

Abstract Microblogging has taken a considerable upturn in recent years, with the growth of microblogging websites like Twitter people have started to share more of their opinions about various pressing issues on such online social networks. A broader understanding of the domain in question is required to make an informed decision. With this motivation, our study focuses on finding overall sentiments of related topics with reference to a given topic. We propose an architecture that combines sentiment analysis and community detection to get an overall sentiment of related topics. We apply that model on the following topics: shopping, politics, covid19 and electric vehicles to understand emerging trends, issues and its possible marketing, business and political implications.


2014 ◽  
Vol 11 (1) ◽  
pp. 215-228 ◽  
Author(s):  
Duc Trung ◽  
Jason Jung

Understanding customers? opinion and subjectivity is regarded as an important task in various domains (e.g., marketing). Particularly, with many types of social media (e.g., Twitter and FaceBook), such opinions are propagated to other users and might make a significant influence on them. In this paper, we propose a fuzzy propagation modeling for opinion mining by sentiment analysis of online social networks. Thereby, a practical system, called TweetScope, has been implemented to efficiently collect and analyze all possible tweets from customers.


2016 ◽  
Vol 85 (1) ◽  
pp. 80-95 ◽  
Author(s):  
Ramon Gouveia Rodrigues ◽  
Rafael Marques das Dores ◽  
Celso G. Camilo-Junior ◽  
Thierson Couto Rosa

Author(s):  
Pulkit Mehndiratta

With the ever-increasing acceptance of online social networks (OSNs), a new dimension has evolved for communication amongst humans. OSNs have given us the opportunity to monitor and mine the opinions of a large number of online active populations in real time. Many diverse approaches have been proposed, various datasets have been generated, but there is a need of collective understanding of this area. Researchers are working around the globe to find a pattern to judge the mood of the user; the still serious problem of detection of irony and sarcasm in textual data poses a threat to the accuracy of the techniques evolved till date. This chapter aims to help the reader to think and learn more clearly about the aspects of sentiment analysis, social network analysis, and detection of irony or sarcasm in textual data generated via online social networks. It argues and discusses various techniques and solutions available in literature currently. In the end, the chapter provides some answers to the open-ended question and future research directions related to the analysis of textual data.


Sign in / Sign up

Export Citation Format

Share Document