scholarly journals Sentiment analysis based on fuzzy propagation in online social networks: A case study on TweetScope

2014 ◽  
Vol 11 (1) ◽  
pp. 215-228 ◽  
Author(s):  
Duc Trung ◽  
Jason Jung

Understanding customers? opinion and subjectivity is regarded as an important task in various domains (e.g., marketing). Particularly, with many types of social media (e.g., Twitter and FaceBook), such opinions are propagated to other users and might make a significant influence on them. In this paper, we propose a fuzzy propagation modeling for opinion mining by sentiment analysis of online social networks. Thereby, a practical system, called TweetScope, has been implemented to efficiently collect and analyze all possible tweets from customers.

2022 ◽  
pp. 255-263
Author(s):  
Chirag Visani ◽  
Vishal Sorathiya ◽  
Sunil Lavadiya

The popularity of the internet has increased the use of e-commerce websites and news channels. Fake news has been around for many years, and with the arrival of social media and modern-day news at its peak, easy access to e-platform and exponential growth of the knowledge available on social media networks has made it intricate to differentiate between right and wrong information, which has caused large effects on the offline society already. A crucial goal in improving the trustworthiness of data in online social networks is to spot fake news so the detection of spam news becomes important. For sentiment mining, the authors specialise in leveraging Facebook, Twitter, and Whatsapp, the most prominent microblogging platforms. They illustrate how to assemble a corpus automatically for sentiment analysis and opinion mining. They create a sentiment classifier using the corpus that can classify between fake, real, and neutral opinions in a document.


2021 ◽  
pp. 1-13
Author(s):  
C S Pavan Kumar ◽  
L D Dhinesh Babu

Sentiment analysis is widely used to retrieve the hidden sentiments in medical discussions over Online Social Networking platforms such as Twitter, Facebook, Instagram. People often tend to convey their feelings concerning their medical problems over social media platforms. Practitioners and health care workers have started to observe these discussions to assess the impact of health-related issues among the people. This helps in providing better care to improve the quality of life. Dementia is a serious disease in western countries like the United States of America and the United Kingdom, and the respective governments are providing facilities to the affected people. There is much chatter over social media platforms concerning the patients’ care, healthy measures to be followed to avoid disease, check early indications. These chatters have to be carefully monitored to help the officials take necessary precautions for the betterment of the affected. A novel Feature engineering architecture that involves feature-split for sentiment analysis of medical chatter over online social networks with the pipeline is proposed that can be used on any Machine Learning model. The proposed model used the fuzzy membership function in refining the outputs. The machine learning model has obtained sentiment score is subjected to fuzzification and defuzzification by using the trapezoid membership function and center of sums method, respectively. Three datasets are considered for comparison of the proposed and the regular model. The proposed approach delivered better results than the normal approach and is proved to be an effective approach for sentiment analysis of medical discussions over online social networks.


Information ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 154 ◽  
Author(s):  
Ricardo Resende de Mendonça ◽  
Daniel Felix de Brito ◽  
Ferrucio de Franco Rosa ◽  
Júlio Cesar dos Reis ◽  
Rodrigo Bonacin

Criminals use online social networks for various activities by including communication, planning, and execution of criminal acts. They often employ ciphered posts using slang expressions, which are restricted to specific groups. Although literature shows advances in analysis of posts in natural language messages, such as hate discourses, threats, and more notably in the sentiment analysis; research enabling intention analysis of posts using slang expressions is still underexplored. We propose a framework and construct software prototypes for the selection of social network posts with criminal slang expressions and automatic classification of these posts according to illocutionary classes. The developed framework explores computational ontologies and machine learning (ML) techniques. Our defined Ontology of Criminal Expressions represents crime concepts in a formal and flexible model, and associates them with criminal slang expressions. This ontology is used for selecting suspicious posts and decipher them. In our solution, the criminal intention in written posts is automatically classified relying on learned models from existing posts. This work carries out a case study to evaluate the framework with 8,835,290 tweets. The obtained results show its viability by demonstrating the benefits in deciphering posts and the effectiveness of detecting user’s intention in written criminal posts based on ML.


2019 ◽  
Vol 11 (16) ◽  
pp. 4459 ◽  
Author(s):  
Vasile-Daniel Păvăloaia ◽  
Elena-Mădălina Teodor ◽  
Doina Fotache ◽  
Magdalena Danileţ

Any brand’s presence on social networks has a significant impact on emotional reactions of its users to different types of posts on social media (SM). If a company understands the preferred types of posts (photo or video) of its customers, based on their reactions, it could make use of these preferences in designing its future communication strategy. The study examines how the use of SM technology and customer-centric management systems could contribute to sustainable business development of companies by means of social customer relationship management (sCRM). The two companies included in the study provide a general consumer good in the beverage industry. As such, it may be said that users interacting with the posts these companies make on their official channels are in fact customers or potential customers. The study aims to analyze customer reaction to two types of posts (photos or videos) on six social networks: Facebook, Twitter, Instagram, Pinterest, Google+ and Youtube. It brings evidence on the differences and similarities between the SM customer behaviors of two highly competitive brands in the beverage industry. Drawing on current literature on SM, sCRM and marketing, the output of this study is the conceptualization and measurement of a brand’s SM ability to understand customer preferences for different types of posts by using various statistical tools and the sentiment analysis (SA) technique applied to big sets of data.


2022 ◽  
pp. 116-141
Author(s):  
Praneeth Gunti ◽  
Brij B. Gupta ◽  
Elhadj Benkhelifa

IoT technology and the widespread usage of public networking platforms and apps also made it possible to use data mining in extracting useful perspectives from unorganised knowledge. In the age of big data, opinion mining may be applied as a valuable way in order to classify views into various sentiment and in general to determine the attitude of the population. Other methods to OSA have been established over the years in various datasets and evaluated in varying conditions. In this respect, this chapter highlights the scope of OMSA strategies and forms of implementing OMSA principles. Besides technological issues of OMSA, this chapter also outlined both technical problems regarding its production and non-technical issues regarding its use. There are obstacles for potential study.


2021 ◽  
Vol 13 (7) ◽  
pp. 3836
Author(s):  
David Flores-Ruiz ◽  
Adolfo Elizondo-Salto ◽  
María de la O. Barroso-González

This paper explores the role of social media in tourist sentiment analysis. To do this, it describes previous studies that have carried out tourist sentiment analysis using social media data, before analyzing changes in tourists’ sentiments and behaviors during the COVID-19 pandemic. In the case study, which focuses on Andalusia, the changes experienced by the tourism sector in the southern Spanish region as a result of the COVID-19 pandemic are assessed using the Andalusian Tourism Situation Survey (ECTA). This information is then compared with data obtained from a sentiment analysis based on the social network Twitter. On the basis of this comparative analysis, the paper concludes that it is possible to identify and classify tourists’ perceptions using sentiment analysis on a mass scale with the help of statistical software (RStudio and Knime). The sentiment analysis using Twitter data correlates with and is supplemented by information from the ECTA survey, with both analyses showing that tourists placed greater value on safety and preferred to travel individually to nearby, less crowded destinations since the pandemic began. Of the two analytical tools, sentiment analysis can be carried out on social media on a continuous basis and offers cost savings.


2021 ◽  
Vol 23 ◽  
pp. 100136
Author(s):  
Martino Trevisan ◽  
Luca Vassio ◽  
Danilo Giordano

Author(s):  
Mohammed N. Al-Kabi ◽  
Heider A. Wahsheh ◽  
Izzat M. Alsmadi

Sentiment Analysis/Opinion Mining is associated with social media and usually aims to automatically identify the polarities of different points of views of the users of the social media about different aspects of life. The polarity of a sentiment reflects the point view of its author about a certain issue. This study aims to present a new method to identify the polarity of Arabic reviews and comments whether they are written in Modern Standard Arabic (MSA), or one of the Arabic Dialects, and/or include Emoticons. The proposed method is called Detection of Arabic Sentiment Analysis Polarity (DASAP). A modest dataset of Arabic comments, posts, and reviews is collected from Online social network websites (i.e. Facebook, Blogs, YouTube, and Twitter). This dataset is used to evaluate the effectiveness of the proposed method (DASAP). Receiver Operating Characteristic (ROC) prediction quality measurements are used to evaluate the effectiveness of DASAP based on the collected dataset.


Sign in / Sign up

Export Citation Format

Share Document