Genetic Improvement of Edible and Non-edible Jatropha for Marginal Environments in Sub-Saharan Africa

Author(s):  
Matthias Martin ◽  
Brigitte Bohlinger ◽  
Elisa Senger ◽  
Euloge Dongmeza ◽  
Zafitsara Tantely Andrianirina ◽  
...  
Author(s):  
M.G.G. Chagunda ◽  
J.P. Gibson ◽  
K. Dzama ◽  
J.E.O Rege

SummaryAnimal breeding for increased productivity over the past 50 to 60 years has been very successful in terms of increasing growth rate, milk yield and egg production in most livestock producing regions of the world (Rauwet al., 1998). However, this success has not registered that well in most countries in sub-Saharan Africa (SSA). Ironically, just like most developing regions, SSA is faced with the challenge to increase rapidly the agricultural productivity to help feed their growing human populations without depleting the natural resource base (Rege, 2005). Genetic improvement of livestock depends on access to genetic variation and effective methods for exploiting this variation (Rege, 2005). This is where human capacity and infrastructure for decision-support systems in animal breeding are required. This paper provides a synthesis of views from a cross-section of livestock production experts working in SSA. These views were collated through an e-conference which was held from 8th March to 20th April 2011. The e-conference discussed future research and development (R&D) needs for animal breeding and genetics in SSA and how they can be met. The e-conference attracted 43 participants from 17 countries. Results from the e-conference demonstrated that the R&D institutions and infrastructure in SSA vary widely in terms of both the physical and human capacity. Equally varied is the level of utilization of these institutions. In terms of training in Animal Breeding and Genetics, although most universities/colleges have programmes in Animal Science and teach animal breeding and genetics, there are very few practicing animal breeders. Lack of mentorship programmes and collaboration, and in some cases lack of appropriate jobs, continue to contribute to this ‘leaking pipeline’ phenomenon. The following is a summary of the consensus stemming from the conference on how the efficiency and effectiveness of livestock genetic improvement in SSA could be enhanced. First, the need to augment the approach that promotes animal breeding and genetics as part of a wider agriculture and rural development system, second, collaboration both within Africa and with those in the Diaspora should be further tapped into and utilized as a source of capacity for R&D and third, initiative of sharing resources and research platforms such as pooling data for genetic analysis from across institutions, and even across countries, should be encouraged in case where this is advantageous to do so.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1345
Author(s):  
Nomathemba Gloria Majola ◽  
Abe Shegro Gerrano ◽  
Hussein Shimelis

Bambara groundnut (Vigna subterranea [L.] Verdc.) is a nutritionally rich grain legume crop indigenous to Africa. It is tolerant to drought stress and has become adapted to grow under low input and marginal agricultural production systems in Africa and Asia. Bambara groundnut is an orphan crop, and represents a neglected and under researched plant genetic resource. Modern crop management, production technologies, and value chains are yet to be developed in Africa to achieve the potential economic gains from Bambara groundnut production and marketing. In sub-Saharan Africa (SSA) the production and productivity of Bambara groundnut is low and stagnant because of diverse abiotic and biotic stresses and socio-economic constraints. Improved crop management and post handling technologies, modern varieties with high yield and nutritional quality, value addition, and market access are among the key considerations in current and future Bambara groundnut research and development programs. This paper presents progress on Bambara groundnut production, utilization, and genetic improvement in SSA. It presents the key production constraints, genetic resources and analysis, breeding methods and genetic gains on yield, and nutritional quality and outlook. The information presented will guide the sustainable production and effective breeding of the crop in order to pursue food and nutrition security, and improve livelihoods through Bambara groundnut enterprises.


2021 ◽  
Vol 267 ◽  
pp. 108159
Author(s):  
Koichi Futakuchi ◽  
Kalimuthu Senthilkumar ◽  
Aminou Arouna ◽  
Elke Vandamme ◽  
Mandiaye Diagne ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Julianna M. S. Soares ◽  
Anelita J. Rocha ◽  
Fernanda S. Nascimento ◽  
Adriadna S. Santos ◽  
Robert N. G. Miller ◽  
...  

Bananas are an important staple food crop in tropical and subtropical regions in Asia, sub-Saharan Africa, and Central and South America. The plant is affected by numerous diseases, with the fungal leaf disease black Sigatoka, caused by Mycosphaerella fijiensis Morelet [anamorph: Pseudocercospora fijiensis (Morelet) Deighton], considered one of the most economically important phytosanitary problem. Although the development of resistant cultivars is recognized as most effective method for long term control of the disease, the majority of today's cultivars are susceptible. In order to gain insights into this pathosystem, this first systematic literature review on the topic is presented. Utilizing six databases (PubMed Central, Web of Science, Google Academic, Springer, CAPES and Scopus Journals) searches were performed using pre-established inclusion and exclusion criteria. From a total of 3,070 published studies examined, 24 were relevant with regard to the Musa-P. fijiensis pathosystem. Relevant papers highlighted that resistant and susceptible cultivars clearly respond differently to infection by this pathogen. M. acuminata wild diploids such as Calcutta 4 and other diploid cultivars can harbor sources of resistance genes, serving as parentals for the generation of improved diploids and subsequent gene introgression in new cultivars. From the sequenced reference genome of Musa acuminata, although the function of many genes in the genome still require validation, on the basis of transcriptome, proteome and biochemical data, numerous candidate genes and molecules have been identified for further evaluation through genetic transformation and gene editing approaches. Genes identified in the resistance response have included those associated with jasmonic acid and ethylene signaling, transcription factors, phenylpropanoid pathways, antioxidants and pathogenesis-related proteins. Papers in this study also revealed gene-derived markers in Musa applicable for downstream application in marker assisted selection. The information gathered in this review furthers understanding of the immune response in Musa to the pathogen P. fijiensis and is relevant for genetic improvement programs for bananas and plantains for control of black Sigatoka.


2017 ◽  
Vol 1 (6) ◽  
pp. 533-537
Author(s):  
Lorenz von Seidlein ◽  
Borimas Hanboonkunupakarn ◽  
Podjanee Jittmala ◽  
Sasithon Pukrittayakamee

RTS,S/AS01 is the most advanced vaccine to prevent malaria. It is safe and moderately effective. A large pivotal phase III trial in over 15 000 young children in sub-Saharan Africa completed in 2014 showed that the vaccine could protect around one-third of children (aged 5–17 months) and one-fourth of infants (aged 6–12 weeks) from uncomplicated falciparum malaria. The European Medicines Agency approved licensing and programmatic roll-out of the RTSS vaccine in malaria endemic countries in sub-Saharan Africa. WHO is planning further studies in a large Malaria Vaccine Implementation Programme, in more than 400 000 young African children. With the changing malaria epidemiology in Africa resulting in older children at risk, alternative modes of employment are under evaluation, for example the use of RTS,S/AS01 in older children as part of seasonal malaria prophylaxis. Another strategy is combining mass drug administrations with mass vaccine campaigns for all age groups in regional malaria elimination campaigns. A phase II trial is ongoing to evaluate the safety and immunogenicity of the RTSS in combination with antimalarial drugs in Thailand. Such novel approaches aim to extract the maximum benefit from the well-documented, short-lasting protective efficacy of RTS,S/AS01.


1993 ◽  
Vol 47 (3) ◽  
pp. 555-556
Author(s):  
Lado Ruzicka

Crisis ◽  
2011 ◽  
Vol 32 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Eugene Kinyanda ◽  
Ruth Kizza ◽  
Jonathan Levin ◽  
Sheila Ndyanabangi ◽  
Catherine Abbo

Background: Suicidal behavior in adolescence is a public health concern and has serious consequences for adolescents and their families. There is, however, a paucity of data on this subject from sub-Saharan Africa, hence the need for this study. Aims: A cross-sectional multistage survey to investigate adolescent suicidality among other things was undertaken in rural northeastern Uganda. Methods: A structured protocol administered by trained psychiatric nurses collected information on sociodemographics, mental disorders (DSM-IV criteria), and psychological and psychosocial risk factors for children aged 3–19 years (N = 1492). For the purposes of this paper, an analysis of a subsample of adolescents (aged 10–19 years; n = 897) was undertaken. Results: Lifetime suicidality in this study was 6.1% (95% CI, 4.6%–7.9%). Conclusions: Factors significantly associated with suicidality included mental disorder, the ecological factor district of residence, factors suggestive of low socioeconomic status, and disadvantaged childhood experiences.


Sign in / Sign up

Export Citation Format

Share Document