High-dimensional Microarray Data Analysis

Author(s):  
Shuichi Shinmura
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Ahmed Bir-Jmel ◽  
Sidi Mohamed Douiri ◽  
Souad Elbernoussi

The recent advance in the microarray data analysis makes it easy to simultaneously measure the expression levels of several thousand genes. These levels can be used to distinguish cancerous tissues from normal ones. In this work, we are interested in gene expression data dimension reduction for cancer classification, which is a common task in most microarray data analysis studies. This reduction has an essential role in enhancing the accuracy of the classification task and helping biologists accurately predict cancer in the body; this is carried out by selecting a small subset of relevant genes and eliminating the redundant or noisy genes. In this context, we propose a hybrid approach (MWIS-ACO-LS) for the gene selection problem, based on the combination of a new graph-based approach for gene selection (MWIS), in which we seek to minimize the redundancy between genes by considering the correlation between the latter and maximize gene-ranking (Fisher) scores, and a modified ACO coupled with a local search (LS) algorithm using the classifier 1NN for measuring the quality of the candidate subsets. In order to evaluate the proposed method, we tested MWIS-ACO-LS on ten well-replicated microarray datasets of high dimensions varying from 2308 to 12600 genes. The experimental results based on ten high-dimensional microarray classification problems demonstrated the effectiveness of our proposed method.


2008 ◽  
Vol 06 (02) ◽  
pp. 261-282 ◽  
Author(s):  
AO YUAN ◽  
WENQING HE

Clustering is a major tool for microarray gene expression data analysis. The existing clustering methods fall mainly into two categories: parametric and nonparametric. The parametric methods generally assume a mixture of parametric subdistributions. When the mixture distribution approximately fits the true data generating mechanism, the parametric methods perform well, but not so when there is nonnegligible deviation between them. On the other hand, the nonparametric methods, which usually do not make distributional assumptions, are robust but pay the price for efficiency loss. In an attempt to utilize the known mixture form to increase efficiency, and to free assumptions about the unknown subdistributions to enhance robustness, we propose a semiparametric method for clustering. The proposed approach possesses the form of parametric mixture, with no assumptions to the subdistributions. The subdistributions are estimated nonparametrically, with constraints just being imposed on the modes. An expectation-maximization (EM) algorithm along with a classification step is invoked to cluster the data, and a modified Bayesian information criterion (BIC) is employed to guide the determination of the optimal number of clusters. Simulation studies are conducted to assess the performance and the robustness of the proposed method. The results show that the proposed method yields reasonable partition of the data. As an illustration, the proposed method is applied to a real microarray data set to cluster genes.


2003 ◽  
Vol 01 (03) ◽  
pp. 541-586 ◽  
Author(s):  
Tero Aittokallio ◽  
Markus Kurki ◽  
Olli Nevalainen ◽  
Tuomas Nikula ◽  
Anne West ◽  
...  

Microarray analysis has become a widely used method for generating gene expression data on a genomic scale. Microarrays have been enthusiastically applied in many fields of biological research, even though several open questions remain about the analysis of such data. A wide range of approaches are available for computational analysis, but no general consensus exists as to standard for microarray data analysis protocol. Consequently, the choice of data analysis technique is a crucial element depending both on the data and on the goals of the experiment. Therefore, basic understanding of bioinformatics is required for optimal experimental design and meaningful interpretation of the results. This review summarizes some of the common themes in DNA microarray data analysis, including data normalization and detection of differential expression. Algorithms are demonstrated by analyzing cDNA microarray data from an experiment monitoring gene expression in T helper cells. Several computational biology strategies, along with their relative merits, are overviewed and potential areas for additional research discussed. The goal of the review is to provide a computational framework for applying and evaluating such bioinformatics strategies. Solid knowledge of microarray informatics contributes to the implementation of more efficient computational protocols for the given data obtained through microarray experiments.


Sign in / Sign up

Export Citation Format

Share Document