Forest Cover Change Analysis in Sundarban Delta Using Remote Sensing Data and GIS

Author(s):  
K. Kundu ◽  
P. Halder ◽  
J. K. Mandal
2019 ◽  
Vol 75 ◽  
pp. 02005
Author(s):  
Elena Fedotova

The current state of the land cover has been estimated in the territories where in different years (1885, 1955, 1995) the forests were damaged by Siberian silkmoth. Dark-needle taiga is restored through the change of tree species. In 20 years in areas of dark-needle taiga there are graminoid communities, in 60 years we have deciduous forests there, and in 130 - dark needle forests, but not everywhere.


Author(s):  
Виктор Владимирович Тарасенко ◽  
Борис Владимирович Раевский ◽  
Viktor Tarasenko ◽  
Boris Raevsky

2018 ◽  
Vol 10 (2) ◽  
pp. 73-78
Author(s):  
MA Salam ◽  
MAT Pramanik

Deforestation, degradation, damages, transformation and over exploitation of forests are the common problem in different parts of the world. Timely monitoring and assessment of forest resources may help to address and identify the above mentioned problems and thus proper guidance may be given the forest resources manager for rational planning and management of forests. Apart from the conventional methods of forest monitoring, remote sensing with its unique capability of synoptic viewing, real time and repetitive nature offers a potential tool for monitoring and evaluation of forest resources and hence remote sensing technology has been successfully used in various studies like forest inventory, monitoring of forest cover changes and forest damage assessment. In the present research forest cover change analysis in ‘Madhupur Sal Forest’ located in central part of Bangladesh has been investigated using satellite remote sensing data and spatial analysis. Transformation of ‘Sal forest’ to other landuse has been studied using the Landsat MSS (Multi Spectral Scanner) data of 1973 and Landsat 8 OLI (Operational Land Imager) data of 2015. Driving forces behind the transformation of ‘Sal forest’ has also been investigated through GPS (Global Positioning System) based ground verification and interview with the people living in the locality.J. Environ. Sci. & Natural Resources, 10(2): 73-78 2017


Land ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 88 ◽  
Author(s):  
Arild Angelsen ◽  
Mariel Aguilar-Støen ◽  
John Ainembabazi ◽  
Edwin Castellanos ◽  
Matthew Taylor

This article investigates how migration and remittances affect forest cover in eight rural communities in Guatemala and Chiapas, Mexico. Based on household surveys and remote sensing data, we found little evidence to support the widespread claim that migration takes pressure off forests. In the Chiapas sites, we observed no significant changes in forest cover since 1990, while in the Guatemalan sites, migration may have increased demand for agricultural land, leading to an average annual forest loss of 0.73% during the first decade of the millennium. We suggest that when attractive opportunities exist to invest in agriculture and land expansion, remittances and returnee savings provide fresh capital that is likely to increase pressure on forests. Our study also has implications for the understanding of migration flows; in particular, migration has not implied an exodus out of agriculture for the remaining household members nor for the returning migrants. On the contrary, returning migrants are more likely to be involved in farming activities after their return than they were before leaving.


Author(s):  
S. Xie ◽  
J. Gong ◽  
X. Huang

Forest is the lung of the earth, and it has important effect on maintaining the ecological balance of the whole earth. This study was conducted in Inner Mongolia during the year 1990–2015. Land use and land cover data were used to obtain forest cover change of Inner Mongolia. In addition, protected area data, road data, ASTER GDEM data were combined with forest cover change data to analyze the relationship between them. Moreover, patch density and landscape shape index were calculated to analyze forest change in perspective of landscape aspect. The results indicated that forest area increased overall during the study period. However, a few cities still had a phenomenon of reduced forest area. Results also demonstrated that the construction of protected area had positive effect on protecting forest while roads may disturbed forest due to human activities. In addition, forest patches in most of cities of Inner Mongolia tended to be larger and less fragmented. This paper reflected forest change in Inner Mongolia objectively, which is helpful for policy making by government.


2011 ◽  
Vol 10 ◽  
pp. 16-21
Author(s):  
Rabindra Man Tamrakar

Greenhouse effect causes global warming and its main consequence is the climate change. Average global temperature is rising significantly over the period. Despite the contribution of total GHG emission by Nepal to the global community is insignificant compared to the developed countries, Nepal has already encountered several adverse effects due to the global climate change, leading to the melting of Himalayan glaciers, reduced agriculture production, loss of biodiversity and ecosystems and changes in social structure and livelihoods. Forest land use change is responsible for CO2 emissions. Forest management therefore can play a significant role in climatic change mitigation. REDD has become the key mechanism in mitigating climate change. The success of REDD mechanism however depends primarily on availability of reliable forestry data including biomass changes and forest carbon estimates. Various Remote Sensing data including optical sensor data have been used for the analysis of forest cover change and estimation of degree of deforestation and degradation. LiDAR however has been widely used in estimating forest biomass for the climate change mitigation.


Sign in / Sign up

Export Citation Format

Share Document