scholarly journals Impacts of Climate Change and Remote Sensing Technology in its Mitigation Options through Forest Management

2011 ◽  
Vol 10 ◽  
pp. 16-21
Author(s):  
Rabindra Man Tamrakar

Greenhouse effect causes global warming and its main consequence is the climate change. Average global temperature is rising significantly over the period. Despite the contribution of total GHG emission by Nepal to the global community is insignificant compared to the developed countries, Nepal has already encountered several adverse effects due to the global climate change, leading to the melting of Himalayan glaciers, reduced agriculture production, loss of biodiversity and ecosystems and changes in social structure and livelihoods. Forest land use change is responsible for CO2 emissions. Forest management therefore can play a significant role in climatic change mitigation. REDD has become the key mechanism in mitigating climate change. The success of REDD mechanism however depends primarily on availability of reliable forestry data including biomass changes and forest carbon estimates. Various Remote Sensing data including optical sensor data have been used for the analysis of forest cover change and estimation of degree of deforestation and degradation. LiDAR however has been widely used in estimating forest biomass for the climate change mitigation.

2021 ◽  
Vol 13 (19) ◽  
pp. 3845
Author(s):  
Guangbo Ren ◽  
Jianbu Wang ◽  
Yunfei Lu ◽  
Peiqiang Wu ◽  
Xiaoqing Lu ◽  
...  

Climate change has profoundly affected global ecological security. The most vulnerable region on Earth is the high-latitude Arctic. Identifying the changes in vegetation coverage and glaciers in high-latitude Arctic coastal regions is important for understanding the process and impact of global climate change. Ny-Ålesund, the northern-most human settlement, is typical of these coastal regions and was used as a study site. Vegetation and glacier changes over the past 35 years were studied using time series remote sensing data from Landsat 5/7/8 acquired in 1985, 1989, 2000, 2011, 2015 and 2019. Site survey data in 2019, a digital elevation model from 2009 and meteorological data observed from 1985 to 2019 were also used. The vegetation in the Ny-Ålesund coastal zone showed a trend of declining and then increasing, with a breaking point in 2000. However, the area of vegetation with coverage greater than 30% increased over the whole study period, and the wetland moss area also increased, which may be caused by the accelerated melting of glaciers. Human activities were responsible for the decline in vegetation cover around Ny-Ålesund owing to the construction of the town and airport. Even in areas with vegetation coverage of only 13%, there were at least five species of high-latitude plants. The melting rate of five major glaciers in the study area accelerated, and approximately 82% of the reduction in glacier area occurred after 2000. The elevation of the lowest boundary of the five glaciers increased by 50–70 m. The increase in precipitation and the average annual temperature after 2000 explains the changes in both vegetation coverage and glaciers in the study period.


Land ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 88 ◽  
Author(s):  
Arild Angelsen ◽  
Mariel Aguilar-Støen ◽  
John Ainembabazi ◽  
Edwin Castellanos ◽  
Matthew Taylor

This article investigates how migration and remittances affect forest cover in eight rural communities in Guatemala and Chiapas, Mexico. Based on household surveys and remote sensing data, we found little evidence to support the widespread claim that migration takes pressure off forests. In the Chiapas sites, we observed no significant changes in forest cover since 1990, while in the Guatemalan sites, migration may have increased demand for agricultural land, leading to an average annual forest loss of 0.73% during the first decade of the millennium. We suggest that when attractive opportunities exist to invest in agriculture and land expansion, remittances and returnee savings provide fresh capital that is likely to increase pressure on forests. Our study also has implications for the understanding of migration flows; in particular, migration has not implied an exodus out of agriculture for the remaining household members nor for the returning migrants. On the contrary, returning migrants are more likely to be involved in farming activities after their return than they were before leaving.


2020 ◽  
Author(s):  
Nan Jiang ◽  
Yan Xu ◽  
Tianhe Xu

<p>Precipitable water vapor (PWV) is an important parameter reflecting the amount of solid water in the atmosphere, which is widely utilized in the studies of numerical weather prediction (NWP) and climate change. The microwave radiance measurements made by the space-based remote sensing satellites give us the opportunity to make the climate studies on a global scale. So far, PWV retrieval over the ocean has a long data record and the technology is very mature, but in the case of PWV retrieval over land, it is more challenging to isolate the atmospheric signals from the varied surface signals. In this study, we will apply a new retrieval method over land based on the dual-polarized difference (vertical and horizontal) at 19 GHz and 23 GHz using the brightness temperatures from the Global Change Observation Mission-Water (GCOM-W)/Advanced Microwave Scanning Radiometer 2 (AMSR2). We found polarization difference in brightness temperatures has an exponential relation on the amount of PWV. The validation results of the PWV retrieval from the ground-based GNSS stations show that the proposed method has a mean accuracy of 3.9 mm. Thus, the proposed method can give a possibility to improve the accuracy of data assimilation in the NWP applications and is useful for the studies of global climate change with the long-term data records.</p>


2014 ◽  
Vol 02 (01) ◽  
pp. 1450010
Author(s):  
Dhanasree JAYARAM

India and China have been cooperating with each other at the climate change negotiations since the inception of the United Nations Framework Convention on Climate Change (UNFCCC) in 1992. The paper makes a case that although the road has not been very smooth and has not been free of differences, the two powers have been at the forefront of decision-making in global climate governance and in this exercise, and cooperation has been more prominent than competition or rivalry. The paper analyzes the goals and positions of India at the negotiations within the larger framework of the North–South conflict and South–South cooperation. Whether it is the Common but Differentiated Responsibilities (CBDR) or the bottom-up approach toward climate change mitigation, concerns expressed by both countries have largely been similar, especially since they have championed the cause of equity and climate justice for safeguarding the developing countries' right to develop. The paper explains the manner in which India and China have played an influential role in shaping the technicalities and modalities of various climate mechanisms in the context of their relations with the other developing and least developed countries (LDCs). The paper argues that by building more South–South cooperation mechanisms related to climate change issues, India and China can bring about a just and equitable global climate order that assists developing and LDCs in tackling climate change that affects them most.


Author(s):  
N. Dewnath ◽  
P. Bholanath ◽  
R. Rivas Palma ◽  
B. Freeman ◽  
P. Watt

Abstract. The Guyana Forestry Commission’s (GFC) Monitoring, Reporting and Verification System (MRVS) is a combined Geographic Information System (GIS) and field-based monitoring system, which has underpinned the conducting of a historical assessment of forest cover as well as eight national assessments of forest area change to date. The System seeks to provide the basis for measuring verifiable changes in Guyana’s forest cover and resultant carbon emissions from Guyana’s forests, which will provide the basis for results-based REDD+ compensation in the long-term. With the continuous compilation, analysis and dissemination of MRVS results on a typically annual basis, the GFC envisioned a larger role for this data, in informing national processes such as natural resources policy and management. This resulted in a significant broadening of the application of the MRVS data and products for purposes that are aligned or complementary to national REDD+ objectives and forest policy and management. These broader applications have allowed for a beneficial shift towards the increased use of remote sensing data and scientific reporting to inform forest management, governance and decision making on natural resource management across forested land. This has resulted in a transformation in the nature of data available to inform decision making on forest management and governance, and overall environmental oversight, from predominantly social science data and factors to now incorporating remote sensing and scientific observations and reporting. Primary decision makers are turning to scientific based reporting to determine best approaches for developmental initiatives in Guyana. This study shows how Guyana has demonstrated significant progress in making remote sensing products accessible and useful to policy makers in Guyana.


Sign in / Sign up

Export Citation Format

Share Document