Vehicle Dynamics Simulation Using Elliptical Combined-Slip Tire Model

Author(s):  
Sina Milani ◽  
Hormoz Marzbani ◽  
Ali Khazaei ◽  
Milan Simic ◽  
Reza N. Jazar
Author(s):  
S. C¸ag˘lar Bas¸lamıs¸lı ◽  
Selim Solmaz

In this paper, a control oriented rational tire model is developed and incorporated in a two-track vehicle dynamics model for the prospective design of vehicle dynamics controllers. The tire model proposed in this paper is an enhancement over previous rational models which have taken into account only the peaking and saturation behavior disregarding all other force generation characteristics. Simulation results have been conducted to compare the dynamics of a vehicle model equipped with a Magic Formula tire model, a rational tire model available in the literature and the present rational tire model. It has been observed that the proposed tire model results in vehicle responses that closely follow those obtained with the Magic Formula even for extreme driving scenarios conducted on roads with low adhesion coefficient.


2021 ◽  
Author(s):  
Junning Zhang ◽  
Shaopu YANG ◽  
Yongjie LU

Abstract In the study of vehicle dynamics, the accurate description of tire mechanical characteristics is the basis and key of vehicle dynamics simulation. An innovative tire model is proposed based on fuzzy algorithm and a sinusoidal membership function is used to design fuzzy rules. In order to ensure the accuracy of tire behavior calculation, this model is driven by a small amount of experimental data of tire mechanical characteristics. This tire model consists of four layers of fuzzy systems, each of which has a knowledge base. The data in knowledge base I is obtained by experiments, and the data of knowledge base II is computed by the upper system, and so is the later system. Then, the input signal, the change rate of side slip angle and slip rate, is considered to improve the calculation accuracy of the model. The proposed fuzzy tire model can accurately predict the longitudinal force, lateral force and self-aligning torque of the tire under unknown conditions. Finally, by comparing the fuzzy tire model with the experimental data, it is found that the maximum RRMSE (Relative Root Mean Square Error) value is not more than 0.14. It is proved that the model can accurately describe the tire
mechanical characteristics under combined conditions.


Author(s):  
Brendan J. Chan ◽  
Corina Sandu

This work establishes a semi-empirical wheel-soil interaction model, developed in the framework of plasticity theory and equilibrium analysis, to be used in vehicle dynamics simulations. Vehicle-terrain interaction is a complex phenomena governed by soil mechanical behavior and tire deformation. The application of soil load bearing capacity theory is used in this study to determine the tangential and radial stresses on the soil-wheel interface. Using semi-empirical data, the tire deformation geometry is determined to establish the drawbar pull, tractive force, and wheel load. To illustrate the theory developed, two important case studies are presented: a rigid wheel and a flexible tire on deformable terrain; the differences between the two implementations are discussed. The outcome of this work shows promising results which indicate that the modeling methodology presented could form the basis of a three-dimensional off-road tire model. In an off-road three-dimensional tire model, the traction behavior should include shear forces arising from the surface shear with the soil as well as the bulldozing effect during turning maneuvers.


2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4309
Author(s):  
Wojciech Wach ◽  
Jakub Zębala

Tire yaw marks deposited on the road surface carry a lot of information of paramount importance for the analysis of vehicle accidents. They can be used: (a) in a macro-scale for establishing the vehicle’s positions and orientation as well as an estimation of the vehicle’s speed at the start of yawing; (b) in a micro-scale for inferring among others things the braking or acceleration status of the wheels from the topology of the striations forming the mark. A mathematical model of how the striations will appear has been developed. The model is universal, i.e., it applies to a tire moving along any trajectory with variable curvature, and it takes into account the forces and torques which are calculated by solving a system of non-linear equations of vehicle dynamics. It was validated in the program developed by the author, in which the vehicle is represented by a 36 degree of freedom multi-body system with the TMeasy tire model. The mark-creating model shows good compliance with experimental data. It gives a deep view of the nature of striated yaw marks’ formation and can be applied in any program for the simulation of vehicle dynamics with any level of simplification.


1973 ◽  
Vol 5 (2) ◽  
pp. 114-116
Author(s):  
Kurt J. Snapper ◽  
David A. Seaver

2018 ◽  
Vol 9 (1) ◽  
pp. 219-222
Author(s):  
Attila Szántó ◽  
Gusztáv Áron Szíki ◽  
Sándor Hajdu ◽  
András Gábora ◽  
Kristóf Balázs Sipos

Abstract In the following the role and contribution of vehicle dynamics simulation to the development of race cars at the Faculty of Engineering of the University of Debrecen is presented. The application of the developed simulation program for the optimization of the car’s technical data, together with the principle and method of optimization, is also described here.


Sign in / Sign up

Export Citation Format

Share Document