Atmospheric Aerosols (PM10 and PM2.5) and their Influence on Air Quality in Visakhapatnam City, Andhra Pradesh, India

Author(s):  
K. A. Sunil Kumar ◽  
K. Suresh Kumar ◽  
N. Srinivas ◽  
Akbar Ziauddin
Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 134 ◽  
Author(s):  
Carla Gama ◽  
Casimiro Pio ◽  
Alexandra Monteiro ◽  
Michael Russo ◽  
Ana Patrícia Fernandes ◽  
...  

Desert dust outbreaks may affect air quality. This study estimates the importance of African dust contribution to the PM10 and PM2.5 concentrations observed in rural regional background sites in Portugal. Desert dust contribution is evaluated by two different approaches: A measurement-approach methodology based on the monthly moving 40th percentile, and a model-approach methodology based on WRF-CHIMERE simulations, whose performance is also assessed within this work. Several desert dust episodes affected atmospheric aerosols in the planetary boundary layer over Portugal during 2016. Their intensity was variable, with at least two events (21–22 February and 27–28 October) contributing to exceedances to the PM10 daily limit value defined in the European Air Quality Directive. African dust contributions obtained for the year 2016 with the measurement-approach methodology are higher than the ones simulated by WRF-CHIMERE. Contributions to PM10 and to PM2.5 concentrations range from 0 to 90 µg m−3 and from 0 to 30 µg m−3, respectively, in most of the regions and days. Caution must be employed when using measurement-approach methodologies to quantify dust contributions to PM levels when forest fires occur simultaneously with the long-range transport of desert dust, as happened in August 2016.


2006 ◽  
Vol 4 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Mirjana Tasic ◽  
Slavica Rajsic ◽  
Velibor Novakovic ◽  
Zoran Mijic

The quality and pollution of air and its impact on the environment and particularly on human health, is an issue of significant public and governmental concern. The emission of the main air pollutants (sulfur dioxide, nitrogen oxides) has declined significantly but the trends in concentrations of a particulate matter are less clear and this pollutant still pose a risk to human health. The studies on the quality of air in urban atmosphere related to suspended particles PM10 and PM2.5, and first measurements of their mass concentrations have been initiated in our country in 2002, and are still in progress. The results of preliminary investigations revealed the need for the continuous and long-term systematical sampling measurements and analysis of interaction of the specific pollutants ? PM10 and PM2.5 as well as ozone, heavy metals in the ground level. Survey of some basic knowledge and features of atmospheric particles will be given and the results of air quality assessment in Belgrade will be presented as well.


2015 ◽  
Vol 10 (3) ◽  
pp. 738-746 ◽  
Author(s):  
Shabana Manzoor ◽  
Umesh Kulshrestha

Recently, air quality has become a matter of concern of everyone. According to the reports, atmospheric aerosols play very crucial role in air quality. PM10 and PM2.5 aerosols are integral parts of total suspended particulate matter which affect our health. Often air quality has been reported very poor due to violation of National Ambient Air Quality Standard (NAAQS) limits. PM10 and PM2.5 limits are crossed for both residential as well as sensitive sites. This is one of the major reasons of increasing cases of respiratory diseases in urban areas. However, aerosol loadings alone are not the factor for deciding or predicting toxic and harmful effects of aerosols. Chemical composition and size ranges do matter. Aerosol loadings can be due to three major source categories viz. marine, crustal and anthropogenic. Since, marine and crustal content of aerosols are generally non-toxic and hence, degree of toxicity of air needs to be decided on the basis of anthropogenic fraction having metals, PAHs and other harmful content. Apart from air quality and health, atmospheric aerosols play vital role in other atmospheric processes such as cloud formation, radiative transfer and monsoon etc. Though there are several studies reported on different aspects of atmospheric aerosols, but most of the findings are sort of data reporting based on short term observations. Hence, there is need to investigate the atmospheric aerosols in order to demonstrate local and regional phenomenon on the basis of long term datasets.


2021 ◽  
Vol 1058 (1) ◽  
pp. 012014
Author(s):  
Ruqayah Ali Grmasha ◽  
Shahla N. A. Al-Azzawi ◽  
Osamah J. Al-sareji ◽  
Talal Alardhi ◽  
Mawada Abdellatif ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 189
Author(s):  
Min He ◽  
Junhui Chen ◽  
Yuming He ◽  
Yuan Li ◽  
Qichao Long ◽  
...  

As one of the most populated regions in China, Sichuan province had been suffering from deteriorated air quality due to the dramatic growth of economy and vehicles in recent years. To deal with the increasingly serious air quality problem, Sichuan government agencies had made great efforts to formulate various control measures and policies during the past decade. In order to better understand the emission control progress in recent years and to guide further control policy formulation, the emission trends and source contribution characteristics of SO2, NOX, PM10 and PM2.5 from 2013 to 2017 were characterized by using emission factor approach in this study. The results indicated that SO2 emission decreased rapidly during 2013–2017 with total emission decreased by 52%. NOX emission decreased during 2013–2015 but started to increase slightly afterward. PM10 and PM2.5 emissions went down consistently during the study period, decreased by 26% and 25%, respectively. In summary, the contribution of power plants kept decreasing, while contribution of industrial combustion remained steady in the past 5 years. The contribution of industrial processes increased for SO2 emission, and decreased slightly for NOX, PM10 and PM2.5 emissions. The on-road mobile sources were the largest emission contributor for NOX, accounting for about 32–40%, and its contribution increased during 2013–2015 and then decreased. It was worth mentioning that nonroad mobile sources and natural gas fired boilers were becoming important NOX contributors in Sichuan. Fugitive dust were the key emission sources for PM10 and PM2.5, and the contribution kept increasing in the study period. Comparison results with other inventories, satellite data and ground observations indicated that emission trends developed in this research were relatively credible.


MAUSAM ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 111-118
Author(s):  
SUNIL KUMAR PESHIN ◽  
PRIYANKA SINHA ◽  
AMIT BISHT

Diwali is one of the major and most important festivals celebrated all over India which falls in the period late October to early November every year. It is associated with burning of firecrackers especially during the night of Diwali day that leads to degradation of air quality that lasts for a longer duration of time. Firecrackers on burning releases huge amount of trace gases such as NOx, CO, SO2 and O3 and huge amount of aerosols and particulate matter. The present study focuses on the influence of firecrackers  emissions on surface ozone(O3) ,oxides of nitrogen (NOx) and particulate matter (PM10 and PM2.5)concentration over the capital urban metropolis of India, New Delhi during Diwali festivity period from 2013-2015. A sharp increase is observed in surface ozone, NOx and particulate matter concentration during the Diwali day as compared to control day for 2013 to 2015 which is mainly attributed to burning of firecrackers. However the average concentration levels of the  gaseous pollutants and particulate matter (PM10 and PM2.5) on Diwali day exhibited a decline in 2015 and 2014 as compared to 2013 due to increase in  awareness campaigns among public and increased cost of firecrackers.  


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 281 ◽  
Author(s):  
Xiaoyu Li ◽  
Xiaodong Liu ◽  
Zhi-Yong Yin

Aerosols are an important factor affecting air quality. As the largest source of dust aerosol of East Asia, the Taklimakan Desert in Northwest China witnesses frequent dust storm events, which bring about significant impacts on the downstream air quality. However, the scope and timing of the impacts of Taklimakan dust events on Chinese urban air quality have not yet been fully investigated. In this paper, based on multi-source dust data including ground observations, satellite monitoring, and reanalysis products, as well as air quality index (AQI) and the mass concentrations of PM10 and PM2.5 at 367 urban stations in China for 2015, we examined the temporal and spatial characteristics of the impacts of the Taklimakan dust events on downstream urban air quality in China. The results show that the Taklimakan dust events severely affected the air quality of most cities in Northwest China including eastern Xinjiang, Hexi Corridor and Guanzhong Basin, and even northern Southwest China, leading to significant increases in mass concentrations of PM10 and PM2.5 in these cities correlating with the occurrence of dust events. The mass concentrations of PM10 on dust days increased by 11–173% compared with the non-dust days, while the mass concentration of PM2.5 increased by 21–172%. The increments of the mass concentrations of PM10 and PM2.5 on dust days decreased as the distances increased between the cities and the Taklimakan Desert. The influence of the Taklimakan dust events on the air quality in the downstream cities usually persisted for up to four days. The mass concentrations of PM10 and PM2.5 increased successively and the impact duration shortened gradually with increasing distances to the source area as a strong dust storm progressed toward the southeast from the Taklimakan Desert. The peaks of the PM10 concentrations in the downstream cities of eastern Xinjiang, the Hexi Corridor and the Guanzhong Basin occurred on the second, third and fourth days, respectively, after the initiation of the Taklimakan dust storm.


2020 ◽  
Author(s):  
Małgorzata Werner ◽  
Maciej Kryza ◽  
Justyna Dudek

<p>Some European countries in Eastern or Central Europe, such as Poland, have serious problems with air quality. High concentrations of particulate matter (PM) in winter are often related to high coal and wood combustion for residential heating. Meteorological conditions, i.e. low air temperature and anticyclones, provide favourable conditions for the accumulation of air pollution, rendering it harmful to people.  PM concentrations during the warmer period are much lower, however there are episodes with elevated concentrations related to e.g. long-range transport of pollutants from biomass burning areas. Policy makers in Poland put a lot of effort to improve air quality as well as inform and aware people on harmful effects of air pollution. One of the relevant tools which provides information on the past, current and future state of the air pollution are chemical transport models.</p><p>In this study we aim for validation of PM10 and PM2.5 concentrations from two different chemical transport models – WRF-Chem and EMEP4PL and two different emission databases – a) a regional EMEP database, and b) a local database provided by the Chief Inspectorate of Environmental Pollution. Modelled PM10 and PM2.5 concentrations were compared with observations from Polish stations for the year 2018. The results show a clear seasonal variation of the models performance with the lowest correlation coefficients in summer. Higher seasonal variability is observed for WRF-Chem than EMEP, which is probably related to differences in calculations of boundary layer height. Application of local database improves the results for both models. For several months, the performance of WRF-Chem and EMEP is clearly different, which shows that an ensemble approach with an application of these two models could improve the modelling results. The differences in the model performance significantly influence the results of the population exposure assessment.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document