Different Structural Integrity Assessment Methods for Pipe Containing Circumferential Through-Thickness Crack

Author(s):  
Huifeng Jiang ◽  
Xuedong Chen ◽  
Zhichao Fan

Heretofore, several kinds of codes are applicable to the structural integrity assessment for pipe containing defects, i.e. API 579, R6 and BS 7910 etc. In this paper, different methods from API 579-1/ASME FFS-1: 2007 and R6-2000 were employed to assess the integrity of pipe containing a circumferential through-thickness crack. However, there was a significant difference between the calculated load ratios by these two codes, although the calculated fracture ratios were very close. To verify these results, elastic-plastic finite element analysis was carried out to calculate the limit load and the load ratio. Additionally, the experimental results and our previous engineering experience were also referred to. The final results imply that the larger load ratio obtained from R6-2000 rather than API 579 code is more reasonable for the pipe with good fracture toughness.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1632
Author(s):  
Young-IL Park ◽  
Jin-Seong Cho ◽  
Jeong-Hwan Kim

The International Maritime Organization stipulates that greenhouse gas emissions from ships should be reduced by at least 50% relative to the amount observed in 2008. Consequently, the demand for liquefied natural gas (LNG)-fueled ships has increased significantly. Therefore, an independent type-C cylindrical tank, which is typically applied as an LNG fuel tank, should be investigated. In this study, structural integrity assessments using finite element analysis are performed on C-type LNG fuel tanks for a sea-cleaning vessel. In addition, the applicability of stainless steel and aluminum alloys is evaluated for LNG tank construction. Structural analyses and fatigue limit evaluations, including heat transfer analyses for the tank based on IGC code requirements, are performed, and the results are compared. The results of this study are expected to facilitate the selection of materials used for independent type-C tanks.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tae-Wook Kim ◽  
Seul-Kee Kim ◽  
Seong-Bo Park ◽  
Jae-Myung Lee

In 2012, the International Maritime Organization (IMO) regulated the emissions of SOx and NOx by setting the emission control area and strengthened the regulations on ship building and operation. Because the environmental regulations have been reinforced, there has been a drastic increase in LNG-fueled ships. Therefore, it is necessary to carry out systematic research on the design of the LNG fuel tank, which is one of the important components of LNG fuel supply systems. In this study, aiming to design a type-B LNG fuel tank used in the real structure, a procedure for structural integrity assessment considering the International Gas Carrier (IGC) Code was proposed. A 10,000 TEU containership was chosen as an operating vessel, and independent type-B tank was selected as an LNG fuel tank. Structural integrity was evaluated by applying a systematic procedure based on the IGC Code. A series of finite element analysis was conducted under the various design loads and operating conditions. Fatigue life and fatigue damage were calculated using the numerical results obtained from transient thermal-structural analysis and fatigue analysis to provide the safety level of the design scheme.


Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Cracks and flaws occur in mechanical components and structures, and can lead to catastrophic failures. Therefore, integrity assessment of components with defects is carried out. This paper describes the Elastic Modulus Adjustment Procedures (EMAP) employed herein to determine the limit load of components with cracks or crack-like flaw. On the basis of linear elastic Finite Element Analysis (FEA), by specifying spatial variations in the elastic modulus, numerous set of statically admissible and kinematically admissible distributions can be generated, to obtain lower and upper bounds limit loads. Due to the expected local plastic collapse, the reference volume concept is applied to identify the kinematically active and dead zones in the component. The Reference Volume Method is shown to yield a more accurate prediction of local limit loads. The limit load values are then compared with results obtained from inelastic finite element analysis. The procedures are applied to some practical components with cracks in order to verify their effectiveness in analyzing crack geometries. The analysis is then directed to geometries containing multiple cracks and three-dimensional defect in pressurized components.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


2000 ◽  
Vol 123 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Y. Shindo ◽  
K. Horiguchi ◽  
R. Wang ◽  
H. Kudo

An experimental and analytical investigation in cryogenic Mode I interlaminar fracture behavior and toughness of SL-E woven glass-epoxy laminates was conducted. Double cantilever beam (DCB) tests were performed at room temperature (R.T.), liquid nitrogen temperature (77 K), and liquid helium temperature (4 K) to evaluate the effect of temperature and geometrical variations on the interlaminar fracture toughness. The fracture surfaces were examined by scanning electron microscopy to verify the fracture mechanisms. A finite element model was used to perform the delamination crack analysis. Critical load levels and the geometric and material properties of the test specimens were input data for the analysis which evaluated the Mode I energy release rate at the onset of delamination crack propagation. The results of the finite element analysis are utilized to supplement the experimental data.


2017 ◽  
Vol 62 (3) ◽  
pp. 1881-1887
Author(s):  
P. Ramaswami ◽  
P. Senthil Velmurugan ◽  
R. Rajasekar

Abstract The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA) and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench) results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h). By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.


2021 ◽  
Vol 335 ◽  
pp. 03011
Author(s):  
Mohammed Shariff Mohamed Sulaiman ◽  
Seong Chun Koay ◽  
Ming Yeng Chan ◽  
Hui Leng Choo ◽  
Ming Meng Pang ◽  
...  

This research investigated the lattice structure fabricated using corn husk fibre reinforced recycled polystyrene composite using Finite Element Analysis (FEA). The material’s properties of this composite material were obtained from previous study. Then, the lattice structure of lattice structure was created using Creo® software and the FEA simulation was done by ANSYS software. In this study, the lattice structures were created using triangular prism and hexagonal prism. The analysis was divided into two conditions: 1) lattice structure with different prism shape and similar surface area, 2) lattice structure with varies of strut thickness and 3) lattice structure with different prism shape and similar lattice parameter. The results show the lattice structure with triangular prism have more structural integrity than hexagonal prism. Then, lattice structure with triangular prism can be built with lesser material but stronger and stiffer than lattice structure with hexagonal prism.


Author(s):  
Young-pyo Kim ◽  
Woo-sik Kim ◽  
Young-kwang Lee ◽  
Kyu-hwan Oh

The failure assessment for corroded pipeline has been considered with the burst test and the finite element analysis. The burst tests were conducted on 762mm diameter, 17.5mm wall thickness and API 5L X65 pipe that contained specially manufactured rectangular corrosion defect. The failure pressures for corroded pipeline have been measured by burst testing and classified with respect to corrosion sizes and corroded regions — the body, the girth weld and the seam weld of pipe. Finite element analysis was carried out to derive failure criteria of corrosion defect within the body, the girth weld and the seam weld of the pipe. A series of finite element analyses were performed to obtain a limit load solution for corrosion defects on the basis of burst test. As a result, the criteria for failure assessment of corrosion defect within the body, the girth weld and the seam weld of API 5L X65 gas pipeline were proposed.


Sign in / Sign up

Export Citation Format

Share Document