A Moving Target Trajectory Tracking Method Based on CSI

Author(s):  
Zhanjun Hao ◽  
Lihua Yan ◽  
Xiaochao Dang
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yi Zhu ◽  
Xin Chen ◽  
Chuntao Li

The problem of UAV trajectory tracking is a difficult issue for scholars and engineers, especially when the target curve is a complex curve in the three-dimensional space. In this paper, the coordinate frames during the tracking process are transformed to improve the tracking result. Firstly, the basic concepts of the moving frame are given. Secondly the transfer principles of various moving frames are formulated and the Bishop frame is selected as a final choice for its flexibility. Thirdly, the detailed dynamic equations of the moving frame tracking method are formulated. In simulation, a moving frame of an elliptic cylinder helix is formulated precisely. Then, the devised tracking method on the basis of the dynamic equations is tested in a complete flight control system with 6 DOF nonlinear equations of the UAV. The simulation result shows a satisfactory trajectory tracking performance so that the effectiveness and efficiency of the devised tracking method is proved.


2014 ◽  
Vol 672-674 ◽  
pp. 1931-1934
Author(s):  
Yu Bing Dong ◽  
Guang Liang Cheng ◽  
Ming Jing Li

Occlusion is a difficult problem to be solved in the process of target tracking. In order to solve the problem of occlusion, a new tracking method combined with trajectory prediction and multi-block matching is presented and studied,and a mathematical model of trajectory prediction of moving target is established in polar coordinates and verified through some experiments. The experimental results show that the new tracking method can be better to trace and forecast the moving target under occlusion.


2011 ◽  
Vol 317-319 ◽  
pp. 890-896
Author(s):  
Ming Jun Zhang ◽  
Yuan Yuan Wan ◽  
Zhen Zhong Chu

The traditional centroid tracking method over-relies on the accuracy of segment, which easily lead to loss of underwater moving target. This paper presents an object tracking method based on circular contour extraction, combining region feature and contour feature. Through the correction to circle features, the problem of multiple solutions causing by Hough transform circle detection is avoided. A new motion prediction model is constructed to make up the deficiency that three-order motion prediction model has disadvantage of high dimension and large calculation. The predicted position of object centroid is updated and corrected by circle contour, forming prediction-measurement-updating closed-loop target tracking system. To reduce system processing time, on the premise of the tracking accuracy, a dynamic detection method based on target state prediction model is proposed. The results of contour extraction and underwater moving target experiments demonstrate the effectiveness of the proposed method.


2015 ◽  
Vol 52 (10) ◽  
pp. 101002
Author(s):  
寇添 Kou Tian ◽  
王海晏 Wang Haiyan ◽  
王芳 Wang Fang ◽  
吴学铭 Wu Xueming ◽  
王领 Wang Ling ◽  
...  

2019 ◽  
Vol 2019 (20) ◽  
pp. 6637-6641
Author(s):  
Jinquan Zhang ◽  
Jingwen Li ◽  
Haizhong Ma ◽  
Ye Wang

Sign in / Sign up

Export Citation Format

Share Document