Protein Misfolding and Aggregation of Tau Protein in Alzheimer’s Disease

2020 ◽  
pp. 139-146
Author(s):  
Madhura Chandrashekar ◽  
Subashchandrabose Chinnathambi
2020 ◽  
Vol 20 (13) ◽  
pp. 1195-1213 ◽  
Author(s):  
Satya P. Gupta ◽  
Vaishali M. Patil

Background: Alzheimer’s disease (AD) is one of the neurodegenerative diseases and has been hypothesized to be a protein misfolding disease. In the generation of AD, β-secretase, γ-secretase, and tau protein play an important role. A literature search reflects ever increasing interest in the design and development of anti-AD drugs targeting β-secretase, γ-secretase, and tau protein. Objective: The objective is to explore the structural aspects and role of β-secretase, γ-secretase, and tau protein in AD and the efforts made to exploit them for the design of effective anti-AD drugs. Methods: The manuscript covers the recent studies on design and development of anti-AD drugs exploiting amyloid and cholinergic hypotheses. Results: Based on amyloid and cholinergic hypotheses, effective anti-AD drugs have been searched out in which non-peptidic BACE1 inhibitors have been most prominent. Conclusion: Further exploitation of the structural aspects and the inhibition mechanism for β-secretase, γ-secretase, and tau protein and the use of cholinergic hypothesis may lead still more potent anti-AD drugs.


Author(s):  
Suvarna P. Ingale ◽  
Rupali Patil ◽  
Aman B. Upaganlawar

Alzheimer's disease (AD) is characterized by selective loss of neurons in the hippocampus and neocortex due to abnormalities in proteins, mainly Aβ peptide and tau protein, in the form of abnormal protein aggregations or depositions in neurons. Recently oxidative/nitrosative stress has been identified as an important facilitator of neurodegeneration in AD. Cysteine-dependent proteins are known to be associated with the neurodegenerative process. Such cysteine-dependent enzyme proteins are proteases, antioxidant enzymes, kinases, phosphatases, and also non-enzymatic proteins such that utilize cysteine as a structural part of the catalytic site. This chapter deals with the role of cysteine in handling reactive oxygen/nitrogen species during oxidative/nitrosative stress and posttranslational modification of proteins causing protein misfolding or protein aggregation during neurodegeneration associated with AD.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jiang-Rong Ou ◽  
Meng-Shan Tan ◽  
An-Mu Xie ◽  
Jin-Tai Yu ◽  
Lan Tan

Alzheimer’s disease (AD) is the first most common neurodegenerative disease. Despite a large amount of research, the pathogenetic mechanism of AD has not yet been clarified. The two hallmarks of the pathology of AD are the extracellular senile plaques (SPs) of aggregated amyloid-beta (Aβ) peptide and the accumulation of the intracellular microtubule-associated protein tau into fibrillar aggregates. Heat shock proteins (HSPs) play a key role in preventing protein misfolding and aggregation, and Hsp90 can be viewed as a ubiquitous molecular chaperone potentially involved in AD pathogenesis. A role of Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1), the master regulator of the heat shock response. In AD, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70. Therefore, we review here to further discuss the recent advances and challenges in targeting Hsp90 for AD therapy.


2020 ◽  
Vol 20 (12) ◽  
pp. 1059-1073 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 β (GSK3β), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer’s disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer's disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.


2020 ◽  
Vol 20 (26) ◽  
pp. 2380-2390 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Abdullah Al Mamun ◽  
Md. Ataur Rahman ◽  
Tapan Behl ◽  
Asma Perveen ◽  
...  

Objective: Alzheimer's disease (AD) is a devastating neurodegenerative disorder, characterized by the extracellular accumulations of amyloid beta (Aβ) as senile plaques and intracellular aggregations of tau in the form of neurofibrillary tangles (NFTs) in specific brain regions. In this review, we focus on the interaction of Aβ and tau with cytosolic proteins and several cell organelles as well as associated neurotoxicity in AD. Summary: Misfolded proteins present in cells accompanied by correctly folded, intermediately folded, as well as unfolded species. Misfolded proteins can be degraded or refolded properly with the aid of chaperone proteins, which are playing a pivotal role in protein folding, trafficking as well as intermediate stabilization in healthy cells. The continuous aggregation of misfolded proteins in the absence of their proper clearance could result in amyloid disease including AD. The neuropathological changes of AD brain include the atypical cellular accumulation of misfolded proteins as well as the loss of neurons and synapses in the cerebral cortex and certain subcortical regions. The mechanism of neurodegeneration in AD that leads to severe neuronal cell death and memory dysfunctions is not completely understood until now. Conclusion: Examining the impact, as well as the consequences of protein misfolding, could help to uncover the molecular etiologies behind the complicated AD pathogenesis.


2021 ◽  
Vol 69 ◽  
pp. 131-138
Author(s):  
Susanne Wegmann ◽  
Jacek Biernat ◽  
Eckhard Mandelkow

Sign in / Sign up

Export Citation Format

Share Document