Study on Dynamic Energy-Saving Adjustment Strategy of Metro Vehicle Air-Conditioning and Ventilation System

Author(s):  
Yujie Li ◽  
Xuyang Wang ◽  
Jiao Zhang ◽  
Lu Wang ◽  
Liang Ma
2012 ◽  
Vol 256-259 ◽  
pp. 2640-2643
Author(s):  
Zi Jing Zhang ◽  
Bo Wen ◽  
Zhi Dong Lv

Air-conditioning and ventilation system which control temperature and humidity was designed in this paper. Its aim was to ensure the production process and meet the comfort requirements of workers. Considering that web press equipment load account for large proportion of the total load, we separated out the area of web press and the waste heat was discharged by ventilation system. We adopted Stratified air conditioning on the remaining area because the whole workshop is large space. By means of calculation, energy saving rate of stratified air conditioning system is 25.6% and the refrigerating capacity is reduced by this way of design. Energy-saving effect is remarkable. So it’s a good method to energy conservation.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Rongjiang Ma ◽  
Shen Yang ◽  
Xianlin Wang ◽  
Xi-Cheng Wang ◽  
Ming Shan ◽  
...  

Air-conditioning systems contribute the most to energy consumption among building equipment. Hence, energy saving for air-conditioning systems would be the essence of reducing building energy consumption. The conventional energy-saving diagnosis method through observation, test, and identification (OTI) has several drawbacks such as time consumption and narrow focus. To overcome these problems, this study proposed a systematic method for energy-saving diagnosis in air-conditioning systems based on data mining. The method mainly includes seven steps: (1) data collection, (2) data preprocessing, (3) recognition of variable-speed equipment, (4) recognition of system operation mode, (5) regression analysis of energy consumption data, (6) constraints analysis of system running, and (7) energy-saving potential analysis. A case study with a complicated air-conditioning system coupled with an ice storage system demonstrated the effectiveness of the proposed method. Compared with the traditional OTI method, the data-mining-based method can provide a more comprehensive analysis of energy-saving potential with less time cost, although it strongly relies on data quality in all steps and lacks flexibility for diagnosing specific equipment for energy-saving potential analysis. The results can deepen the understanding of the operating data characteristics of air-conditioning systems.


2020 ◽  
Vol 42 (1) ◽  
pp. 62-81
Author(s):  
Yanhuan Ren ◽  
Junqi Yu ◽  
Anjun Zhao ◽  
Wenqiang Jing ◽  
Tong Ran ◽  
...  

Improving the operational efficiency of chillers and science-based planning the cooling load distribution between the chillers and ice tank are core issues to achieve low-cost and energy-saving operations of ice storage air-conditioning systems. In view of the problems existing in centralized control architecture applied in heating, ventilation, and air conditioning, a distributed multi-objective particle swarm optimization improved by differential evolution algorithm based on a decentralized control structure was proposed. The energy consumption, operating cost, and energy loss were taken as the objectives to solve the chiller’s hourly partial load ratio and the cooling ratio of ice tank. A large-scale shopping mall in Xi’an was used as a case study. The results show that the proposed algorithm was efficient and provided significantly higher energy-savings than the traditional control strategy and particle swarm optimization algorithm, which has the advantages of good convergence, high stability, strong robustness, and high accuracy. Practical application: The end equipment of the electromechanical system is the basic component through the building operation. Based on this characteristic, taken electromechanical equipment as the computing unit, this paper proposes a distributed multi-objective optimization control strategy. In order to fully explore the economic and energy-saving effect of ice storage system, the optimization algorithm solves the chillers operation status and the load distribution. The improved optimization algorithm ensures the diversity of particles, gains fast optimization speed and higher accuracy, and also provides a better economic and energy-saving operation strategy for ice storage air-conditioning projects.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


2021 ◽  
Vol 7 ◽  
pp. 4035-4046
Author(s):  
Wenqiang Jing ◽  
Junqi Yu ◽  
Wei Luo ◽  
Chujun Li ◽  
XinYi Liu

2019 ◽  
Vol 111 ◽  
pp. 02044
Author(s):  
Akemi Iwaki ◽  
Takashi Akimoto ◽  
Naho Misumi ◽  
Takuya Furuhashi

This study focused on the thermal comfort of air circulation-type whole-house air-conditioning ventilation systems. We studied the influence of 24-h continuous whole-house air-conditioning on the living environment in which the occupant is sleeping. A survey was conducted in the summer of 2016 and winter of 2017 to ascertain the influence on the sleeping environment, skin moisture content, and blood pressure. We then compared the results with those of the sleeping environment of residents in air-conditioned housing surveyed the previous year. The sleeping environment when using a personal humidifier around the occupant’s head was examined during winter when the humidity is low. The results indicated that sleep latency was significantly shortened in the 24-h continuous whole-house air-conditioning ventilation system in both summer and winter because the temperature control of the bedroom before going to bed affects the sleep latency. Subjectively, no participants felt dryer than the values measured in the bedroom environment. The results implied that the comfort of the entire building was improved with continuous air-conditioned housing.


2018 ◽  
Vol 38 ◽  
pp. 04012
Author(s):  
Sai Feng Xu ◽  
Xing Lin Yang ◽  
Zou Ying Le

For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins’ dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.


Sign in / Sign up

Export Citation Format

Share Document