Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication

Author(s):  
Walter Bonani ◽  
Nicola Cagol ◽  
Devid Maniglio
2019 ◽  
Vol 5 (6) ◽  
pp. eaaw7396 ◽  
Author(s):  
J. L. Guo ◽  
Y. S. Kim ◽  
V. Y. Xie ◽  
B. T. Smith ◽  
E. Watson ◽  
...  

Synthetic hydrogels are investigated extensively in tissue engineering for their tunable physicochemical properties but are bioinert and lack the tissue-specific cues to produce appropriate biological responses. To introduce tissue-specific biochemical cues to these hydrogels, we have developed a modular hydrogel cross-linker, poly(glycolic acid)–poly(ethylene glycol)–poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT), that can be functionalized with small peptide-based cues and large macromolecular cues simply by mixing PdBT in water with the appropriate biomolecules at room temperature. Cartilage- and bone-specific PdBT macromers were generated by functionalization with a cartilage-associated hydrophobic N-cadherin peptide, a hydrophilic bone morphogenetic protein peptide, and a cartilage-derived glycosaminoglycan, chondroitin sulfate. These biofunctionalized PdBT macromers can spontaneously cross-link polymers such as poly(N-isopropylacrylamide) to produce rapidly cross-linking, highly swollen, cytocompatible, and hydrolytically degradable hydrogels suitable for mesenchymal stem cell encapsulation. These favorable properties, combined with PdBT’s modular design and ease of functionalization, establish strong potential for its usage in tissue engineering applications.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 357 ◽  
Author(s):  
Alena Sergeeva ◽  
Anna S. Vikulina ◽  
Dmitry Volodkin

Formulation of multifunctional biopolymer-based scaffolds is one of the major focuses in modern tissue engineering and regenerative medicine. Besides proper mechanical/chemical properties, an ideal scaffold should: (i) possess a well-tuned porous internal structure for cell seeding/growth and (ii) host bioactive molecules to be protected against biodegradation and presented to cells when required. Alginate hydrogels were extensively developed to serve as scaffolds, and recent advances in the hydrogel formulation demonstrate their applicability as “ideal” soft scaffolds. This review focuses on advanced porous alginate scaffolds (PAS) fabricated using hard templating on vaterite CaCO3 crystals. These novel tailor-made soft structures can be prepared at physiologically relevant conditions offering a high level of control over their internal structure and high performance for loading/release of bioactive macromolecules. The novel approach to assemble PAS is compared with traditional methods used for fabrication of porous alginate hydrogels. Finally, future perspectives and applications of PAS for advanced cell culture, tissue engineering, and drug testing are discussed.


2019 ◽  
Vol 7 (3) ◽  
pp. 1188-1199 ◽  
Author(s):  
Anuraag Boddupalli ◽  
Kaitlin M. Bratlie

We fabricated photocrosslinked, environmentally responsive alginate hydrogels for tissue engineering applications.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 471
Author(s):  
Xia Zhou ◽  
Xiaolin Tang ◽  
Ruimin Long ◽  
Shibin Wang ◽  
Pei Wang ◽  
...  

Cell encapsulation in hydrogels has been extensively used in cytotherapy, regenerative medicine, 3D cell culture, and tissue engineering. Herein, we fabricated microencapsulated cells through microcapsules loaded with C5.18 chondrocytes alginate/chitosan prepared by a high-voltage electrostatic method. Under optimized conditions, microencapsulated cells presented uniform size distribution, good sphericity, and a smooth surface with different cell densities. The particle size distribution was determined at 150–280 μm, with an average particle diameter of 220 μm. The microencapsulated cells were cultured under static, shaking, and 3D micro-gravity conditions with or without bFGF (basic fibroblast growth factor) treatment. The quantified detection (cell proliferation detection and glycosaminoglycan (GAG)/type II collagen (Col-II)) content was respectively determined by cell counting kit-8 assay (CCK-8) and dimethylmethylene blue (DMB)/Col-II secretion determination) and qualitative detection (acridine orange/ethidium bromide, hematoxylin-eosin, alcian blue, safranin-O, and immunohistochemistry staining) of these microencapsulated cells were evaluated. Results showed that microencapsulated C5.18 cells under three-dimensional microgravity conditions promoted cells to form large cell aggregates within 20 days by using bFGF, which provided the possibility for cartilage tissue constructs in vitro. It could be found from the cell viability (cell proliferation) and synthesis (content of GAG and Col-II) results that microencapsulated cells had a better cell proliferation under 3D micro-gravity conditions using bFGF than under 2D conditions (including static and shaking conditions). We anticipate that these results will be a benefit for the design and construction of cartilage regeneration in future tissue engineering applications.


Author(s):  
Xiao Yu Tian ◽  
Ming Gan Li ◽  
Xiong Biao Chen

Tissue scaffolds play a vital role in tissue engineering by providing a native tissue-mimicking environment for cell proliferation and differentiation as well as tissue regeneration. Fabrication of tissue scaffolds has been drawing increasing research attention and a number of fabrication techniques have been developed. To better mimic the microenvironment of native tissues, novel techniques have emerged in recent years to encapsulate cells into the engineered scaffolds during the scaffold fabrication process. Among them, bio-Rapid-Prototyping (bioRP) techniques, by which scaffolds with encapsulated cells can be fabricated with controlled internal microstructure and external shape, shows significant promise. It is noted in the bioRP processes, cells may be continuously subjected to environmental stresses such as mechanical, electrical forces and laser exposure. If the stress is greater than a certain level, the cell membrane may be ruptured, leading to the so-called process-induced cell damage. This paper reviews various cell encapsulation techniques for tissue scaffold fabrication, with emphasis on the bioRP technologies and their technical features. To understand the process-induced cell damage in the bioRP processes, this paper also surveys the cell damage mechanisms under different stresses. The process-induced cell damage models are also examined to provide a cue to the cell viability preservation in the fabrication process. Discussions on further improvements of bioRP technologies are given and ongoing research into mechanical cell damage mechanism are also suggested in this review.


2018 ◽  
Vol 195 ◽  
pp. 235-242 ◽  
Author(s):  
P. Diaz-Rodriguez ◽  
P. Garcia-Triñanes ◽  
M.M. Echezarreta López ◽  
A. Santoveña ◽  
M. Landin

Sign in / Sign up

Export Citation Format

Share Document