Real-Time Object Detection in Remote Sensing Images Using Deep Learning

Author(s):  
Vijender Busi Reddy ◽  
K. Pramod Kumar ◽  
S. Venkataraman ◽  
V. Raghu Venkataraman
Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 495
Author(s):  
Liang Jin ◽  
Guodong Liu

Compared with ordinary images, each of the remote sensing images contains many kinds of objects with large scale changes, providing more details. As a typical object of remote sensing image, ship detection has been playing an essential role in the field of remote sensing. With the rapid development of deep learning, remote sensing image detection method based on convolutional neural network (CNN) has occupied a key position. In remote sensing images, the objects of which small scale objects account for a large proportion are closely arranged. In addition, the convolution layer in CNN lacks ample context information, leading to low detection accuracy for remote sensing image detection. To improve detection accuracy and keep the speed of real-time detection, this paper proposed an efficient object detection algorithm for ship detection of remote sensing image based on improved SSD. Firstly, we add a feature fusion module to shallow feature layers to refine feature extraction ability of small object. Then, we add Squeeze-and-Excitation Network (SE) module to each feature layers, introducing attention mechanism to network. The experimental results based on Synthetic Aperture Radar ship detection dataset (SSDD) show that the mAP reaches 94.41%, and the average detection speed is 31FPS. Compared with SSD and other representative object detection algorithms, this improved algorithm has a better performance in detection accuracy and can realize real-time detection.


2021 ◽  
Vol 14 (1) ◽  
pp. 103
Author(s):  
Dongchuan Yan ◽  
Hao Zhang ◽  
Guoqing Li ◽  
Xiangqiang Li ◽  
Hua Lei ◽  
...  

The breaching of tailings pond dams may lead to casualties and environmental pollution; therefore, timely and accurate monitoring is an essential aspect of managing such structures and preventing accidents. Remote sensing technology is suitable for the regular extraction and monitoring of tailings pond information. However, traditional remote sensing is inefficient and unsuitable for the frequent extraction of large volumes of highly precise information. Object detection, based on deep learning, provides a solution to this problem. Most remote sensing imagery applications for tailings pond object detection using deep learning are based on computer vision, utilizing the true-color triple-band data of high spatial resolution imagery for information extraction. The advantage of remote sensing image data is their greater number of spectral bands (more than three), providing more abundant spectral information. There is a lack of research on fully harnessing multispectral band information to improve the detection precision of tailings ponds. Accordingly, using a sample dataset of tailings pond satellite images from the Gaofen-1 high-resolution Earth observation satellite, we improved the Faster R-CNN deep learning object detection model by increasing the inputs from three true-color bands to four multispectral bands. Moreover, we used the attention mechanism to recalibrate the input contributions. Subsequently, we used a step-by-step transfer learning method to improve and gradually train our model. The improved model could fully utilize the near-infrared (NIR) band information of the images to improve the precision of tailings pond detection. Compared with that of the three true-color band input models, the tailings pond detection average precision (AP) and recall notably improved in our model, with the AP increasing from 82.3% to 85.9% and recall increasing from 65.4% to 71.9%. This research could serve as a reference for using multispectral band information from remote sensing images in the construction and application of deep learning models.


2020 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Lingxuan Meng ◽  
Zhixing Peng ◽  
Ji Zhou ◽  
Jirong Zhang ◽  
Zhenyu Lu ◽  
...  

Unmanned aerial vehicle (UAV) remote sensing and deep learning provide a practical approach to object detection. However, most of the current approaches for processing UAV remote-sensing data cannot carry out object detection in real time for emergencies, such as firefighting. This study proposes a new approach for integrating UAV remote sensing and deep learning for the real-time detection of ground objects. Excavators, which usually threaten pipeline safety, are selected as the target object. A widely used deep-learning algorithm, namely You Only Look Once V3, is first used to train the excavator detection model on a workstation and then deployed on an embedded board that is carried by a UAV. The recall rate of the trained excavator detection model is 99.4%, demonstrating that the trained model has a very high accuracy. Then, the UAV for an excavator detection system (UAV-ED) is further constructed for operational application. UAV-ED is composed of a UAV Control Module, a UAV Module, and a Warning Module. A UAV experiment with different scenarios was conducted to evaluate the performance of the UAV-ED. The whole process from the UAV observation of an excavator to the Warning Module (350 km away from the testing area) receiving the detection results only lasted about 1.15 s. Thus, the UAV-ED system has good performance and would benefit the management of pipeline safety.


2021 ◽  
Vol 13 (6) ◽  
pp. 1132
Author(s):  
Zhibao Wang ◽  
Lu Bai ◽  
Guangfu Song ◽  
Jie Zhang ◽  
Jinhua Tao ◽  
...  

Estimation of the number and geo-location of oil wells is important for policy holders considering their impact on energy resource planning. With the recent development in optical remote sensing, it is possible to identify oil wells from satellite images. Moreover, the recent advancement in deep learning frameworks for object detection in remote sensing makes it possible to automatically detect oil wells from remote sensing images. In this paper, we collected a dataset named Northeast Petroleum University–Oil Well Object Detection Version 1.0 (NEPU–OWOD V1.0) based on high-resolution remote sensing images from Google Earth Imagery. Our database includes 1192 oil wells in 432 images from Daqing City, which has the largest oilfield in China. In this study, we compared nine different state-of-the-art deep learning models based on algorithms for object detection from optical remote sensing images. Experimental results show that the state-of-the-art deep learning models achieve high precision on our collected dataset, which demonstrate the great potential for oil well detection in remote sensing.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1151 ◽  
Author(s):  
Xia Hua ◽  
Xinqing Wang ◽  
Ting Rui ◽  
Dong Wang ◽  
Faming Shao

Aiming at the real-time detection of multiple objects and micro-objects in large-scene remote sensing images, a cascaded convolutional neural network real-time object-detection framework for remote sensing images is proposed, which integrates visual perception and convolutional memory network reasoning. The detection framework is composed of two fully convolutional networks, namely, the strengthened object self-attention pre-screening fully convolutional network (SOSA-FCN) and the object accurate detection fully convolutional network (AD-FCN). SOSA-FCN introduces a self-attention module to extract attention feature maps and constructs a depth feature pyramid to optimize the attention feature maps by combining convolutional long-term and short-term memory networks. It guides the acquisition of potential sub-regions of the object in the scene, reduces the computational complexity, and enhances the network’s ability to extract multi-scale object features. It adapts to the complex background and small object characteristics of a large-scene remote sensing image. In AD-FCN, the object mask and object orientation estimation layer are designed to achieve fine positioning of candidate frames. The performance of the proposed algorithm is compared with that of other advanced methods on NWPU_VHR-10, DOTA, UCAS-AOD, and other open datasets. The experimental results show that the proposed algorithm significantly improves the efficiency of object detection while ensuring detection accuracy and has high adaptability. It has extensive engineering application prospects.


Sign in / Sign up

Export Citation Format

Share Document