Optimization of Energy-Proficient Infrared Radiated Rapid Hydrolysis of Pineapple Skin to Reducing Sugar

Author(s):  
Swapnendu Chatterjee ◽  
Sayan Kumar Bhattacharjee ◽  
Rajdip Roy ◽  
Rajat Chakraborty
2013 ◽  
Vol 750-752 ◽  
pp. 1626-1629
Author(s):  
Bo Yuan ◽  
Ying Wang ◽  
Ying Chao Ji ◽  
Qiu Hong Wang

In this paper, plasma acid was obtained by treating distilled water with dielectric barrier discharge at atmospheric pressure in order to hydrolyze cellulose. The acidity of plasma acid was studied through a single factor experiment. A plasma acid with pH value of 1.42 was obtained and used to hydrolyze microcrystalline cellulose at 80°C for 60min. Under this condition, the integrated optical density (IOD) of the hydrolysis sample was 0.589. Based on standard glucose curve, the total reducing sugar (TRS) was calculated to be 53.75mg and the TRS yield was 53.75%. The filtrate was evaporated to get the solid hydrolysis sample to be analyzed by High-performance liquid chromatography (HPLC). The results showed that the sample mainly consisted of glucose, which proved that microcrystalline cellulose could be hydrolyzed by plasma acid. Therefore, it could be concluded that it was an environmentally friendly and economical method to hydrolyze the microcrystalline cellulose by plasma acid.


Polyhedron ◽  
2012 ◽  
Vol 48 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Fergal Coleman ◽  
Andrea Erxleben

2019 ◽  
Vol 118 ◽  
pp. 03048
Author(s):  
Changchun Li ◽  
Yuxin Wu

Hydrogen generation from rapid hydrolysis of aluminum in sodium fluoride solution was investigated through a hydrolysis experiment. Rapid and instant hydrogen yield were observed using sodium fluoride as additive. The experimental results demonstrate that the increase of temperature and the amount of additives in a certain range will boost the hydrogen production. The amount of additives outside the range only has an effect on the rapid hydrolysis of the aluminum during the initial stage, but the total amount of hydrogen produced doesn’t increased significantly. Theoretical analysis of the effects of the mixing ratio and the temperature on the hydrogen production rates were performed using the shrinking core model and the kinetic model. The shrinking core model parameter a and k indicate the film change degree of porosity and thickness and the effect of time on the diffusion coefficient. the kinetic model is verified and the activation energy confirming hydrogen yield control by a molecular diffusion process. Correspondingly, mechanisms of Al corrosion in NaF solutions under low and high alkalinity were proposed, respectively.


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Vera BARLIANTI ◽  
Deliana DAHNUM ◽  
. MURYANTO ◽  
Eka TRIWAHYUNI ◽  
Yosi ARISTIAWAN ◽  
...  

Abstrak Sebagai salah satu Negara penghasil minyak kelapa sawit mentah (CPO), Indonesia juga menghasilkan tandan kosong kelapa sawit (TKKS) dalam jumlah besar. TKKS terdiri dari-tiga-komponen utama, yaitu selulosa, hemiselulosa, dan lignin. Pengolahan awal TKKS secara alkalindi ikuti dengan hidrolisis TKKS secara enzimatik menggunakan kombinasi enzim selulase dan β-glukosidase akan menghasilkan gula-gula yang mudah difermentasi.  Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi substrat, kon-sentrasi enzim, dan suhu selama proses hidrolisis berlangsung.  Hasil yang diperoleh menunjukkan bahwa konsentrasi gula maksimum (194,78 g/L) dicapai pada konsentrasi TKKS 20% (b/v), konsentrasi campuran enzim yang terdiri dari selulase dan β-1,4 glukosidase sebesar 3,85% (v/v), dan suhu 50oC. Perbandingan antara selulase dan β-1,4 glukosidase adalah 5:1 dengan masing-masing aktivitas enzim sebesar 144.5 FPU/mL dan 63 FPU/mL. Hasil penelitian juga menunjukkan bahwa model kinetika yang sesuai untuk proses hidrolisis TKKS secara enzimatik adalah model kinetika Shen dan Agblevor dengan reakside aktivasi enzim orde satu.  Hasil ini mendukung studi kelayakan ekonomi dalam pemanfaatan TKKS untuk produksi bioetanol.AbstractAs one of the crude palm oil producers, Indonesia also produces empty fruit bunches (EFB)in large quantities. The oil palm EFB consist of cellulose, hemicellulose and lignin. Alkaline pretreatment of EFB, followed by enzymatic hydro-lysis of cellulose using combination of cellulase and β-glucosidase enzymes produce fermentable sugars. This paper reported the effects of substrate loading, enzyme concentration, and temperature of hydrolysis process on reducing sugar production. The  maximum  sugar  concentration (194.78 g/L) was produced at 50oC using 20% (w/v) EFB and 3.85% (v/v) mixed enzymes of cellulase and β-1,4 glucosidase in volume ratio of 5:1 (v/v), with enzyme activity of 144.5 FPU/mL and 63 FPU/mL, respectively. The results also showed that the suitable kinetic model for enzymatic hydrolysis process of oil palm EFB follow Shen and Agblevor model with first order of enzyme deactivation. These results support the economic feasibility study in utilization of EFB of oil palm for bioethanol production.    


2017 ◽  
Vol 224 ◽  
pp. 405-410 ◽  
Author(s):  
Wen-Chao Li ◽  
Xia Li ◽  
Lei Qin ◽  
Jia-Qing Zhu ◽  
Xiao Han ◽  
...  

2017 ◽  
Vol 20 (2) ◽  
pp. 1364-1370 ◽  
Author(s):  
Jinyang Chen ◽  
Chao Zhang ◽  
Mingli Li ◽  
Jingmin Chen ◽  
Yingdi Wang ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Robinson Timung ◽  
Narendra Naik Deshavath ◽  
Vaibhav V. Goud ◽  
Venkata V. Dasu

This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction) and sugarcane bagasse on total reducing sugar (TRS) yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min), maximum TRS obtained was 452.27 mg·g−1and 487.50 mg·g−1for bagasse and citronella, respectively. Enzymatic hydrolysis of the pretreated biomass usingTrichoderma reesei26291 showed maximum TRS yield of 226.99 mg·g−1for citronella and 282.85 mg·g−1for bagasse at 10 FPU, 50°C, and 48 hr. The maximum crystallinity index (CI) of bagasse and citronella after acid pretreatment obtained from X-ray diffraction analysis was 64.41% and 56.18%, respectively. Decreased CI after enzymatic hydrolysis process to 37.28% and 34.16% for bagasse and citronella, respectively, revealed effective conversion of crystalline cellulose to glucose. SEM analysis of the untreated and treated biomass revealed significant hydrolysis of holocellulose and disruption of lignin.


Sign in / Sign up

Export Citation Format

Share Document