Connected and Automated Vehicles: Opportunities and Challenges for Transportation Systems, Smart Cities, and Societies

Author(s):  
Anshuman Sharma ◽  
Zuduo Zheng
2021 ◽  
Vol 6 (3) ◽  
pp. 43
Author(s):  
Konstantinos Gkoumas ◽  
Kyriaki Gkoktsi ◽  
Flavio Bono ◽  
Maria Cristina Galassi ◽  
Daniel Tirelli

Europe’s aging transportation infrastructure requires optimized maintenance programs. However, data and monitoring systems may not be readily available to support strategic decisions or they may require costly installations in terms of time and labor requirements. In recent years, the possibility of monitoring bridges by indirectly sensing relevant parameters from traveling vehicles has emerged—an approach that would allow for the elimination of the costly installation of sensors and monitoring campaigns. The advantages of cooperative, connected, and automated mobility (CCAM), which is expected to become a reality in Europe towards the end of this decade, should therefore be considered for the future development of iSHM strategies. A critical review of methods and strategies for CCAM, including Intelligent Transportation Systems, is a prerequisite for moving towards the goal of identifying the synergies between CCAM and civil infrastructures, in line with future developments in vehicle automation. This study presents the policy framework of CCAM in Europe and discusses the policy enablers and bottlenecks of using CCAM in the drive-by monitoring of transport infrastructure. It also highlights the current direction of research within the iSHM paradigm towards the identification of technologies and methods that could benefit from the use of connected and automated vehicles (CAVs).


Author(s):  
Morteza Sheikh ◽  
Jamshid Aghaei ◽  
Hossein Chabok ◽  
Mahmoud Roustaei ◽  
Taher Niknam ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 306
Author(s):  
Ahmed Dirir ◽  
Henry Ignatious ◽  
Hesham Elsayed ◽  
Manzoor Khan ◽  
Mohammed Adib ◽  
...  

Object counting is an active research area that gained more attention in the past few years. In smart cities, vehicle counting plays a crucial role in urban planning and management of the Intelligent Transportation Systems (ITS). Several approaches have been proposed in the literature to address this problem. However, the resulting detection accuracy is still not adequate. This paper proposes an efficient approach that uses deep learning concepts and correlation filters for multi-object counting and tracking. The performance of the proposed system is evaluated using a dataset consisting of 16 videos with different features to examine the impact of object density, image quality, angle of view, and speed of motion towards system accuracy. Performance evaluation exhibits promising results in normal traffic scenarios and adverse weather conditions. Moreover, the proposed approach outperforms the performance of two recent approaches from the literature.


2022 ◽  
pp. 34-46
Author(s):  
Amtul Waheed ◽  
Jana Shafi ◽  
Saritha V.

In today's world of advanced technologies in IoT and ITS in smart cities scenarios, there are many different projections such as improved data propagation in smart roads and cooperative transportation networks, autonomous and continuously connected vehicles, and low latency applications in high capacity environments and heterogeneous connectivity and speed. This chapter presents the performance of the speed of vehicles on roadways employing machine learning methods. Input variable for each learning algorithm is the density that is measured as vehicle per mile and volume that is measured as vehicle per hour. And the result shows that the output variable is the speed that is measured as miles per hour represent the performance of each algorithm. The performance of machine learning algorithms is calculated by comparing the result of predictions made by different machine learning algorithms with true speed using the histogram. A result recommends that speed is varying according to the histogram.


2020 ◽  
Vol 10 (21) ◽  
pp. 7833
Author(s):  
Elvin Eziama ◽  
Faroq Awin ◽  
Sabbir Ahmed ◽  
Luz Marina Santos-Jaimes ◽  
Akinyemi Pelumi ◽  
...  

Connected and automated vehicles (CAVs) as a part of Intelligent Transportation Systems (ITS) are projected to revolutionise the transportation industry, primarily by allowing real-time and seamless information exchange of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). However, these connectivity and automation are expected to offer vast numbers of benefits, new challenges in terms of safety, security and privacy also emerge. CAVs continue to rely heavily on their sensor readings, the input obtained from other vehicles and the road side units to inspect roadways. Consequently, anomalous reading of sensors triggered by malicious cyber attacks may lead to fatal consequences. Hence, like all other safety-critical applications, in CAVs also, reliable and secure information dissemination is of utmost importance. As a result, real time detection of anomaly along with identifying the source is a pre-requisite for mass deployment of CAVs. Motivated by this safety concerns in CAVs, we develop an efficient anomaly detection method through the combination of Bayesian deep learning (BDL) with discrete wavelet transform (DWT) to improve the safety and security in CAVs. In particular, DWT is used to smooth sensor reading of a CAV and then feed the data to a BDL module for analysis of the detection and identification of anomalous sensor behavior/data points caused by either malicious cyber attacks or faulty vehicle sensors. Our numerical experiments show that the proposed method demonstrates significant improvement in detection anomalies in terms of accuracy, sensitivity, precision, and F1-score evaluation metrics. For these metrics, the proposed method shows an average performance gain of 7.95%, 9%, 8.77% and 7.33%, respectively when compared with Convolutional Neural Network (CNN-1D), and when compared with BDL, the corresponding numbers are 5%, 7.9%, 7.54% and 4.1% respectively.


2020 ◽  
Vol 12 (20) ◽  
pp. 8443
Author(s):  
Ramon Sanchez-Iborra ◽  
Luis Bernal-Escobedo ◽  
José Santa

Cooperative-Intelligent Transportation Systems (C-ITS) have brought a technological revolution, especially for ground vehicles, in terms of road safety, traffic efficiency, as well as in the experience of drivers and passengers. So far, these advances have been focused on traditional transportation means, leaving aside the new generation of personal vehicles that are nowadays flooding our streets. Together with bicycles and motorcycles, personal mobility devices such as segways or electric scooters are firm sustainable alternatives that represent the future to achieve eco-friendly personal mobility in urban settings. In a near future, smart cities will become hyper-connected spaces where these vehicles should be integrated within the underlying C-ITS ecosystem. In this paper, we provide a wide overview of the opportunities and challenges related to this necessary integration as well as the communication solutions that are already in the market to provide these moving devices with low-cost and efficient connectivity. We also present an On-Board Unit (OBU) prototype with different communication options based on the Low Power Wide Area Network (LPWAN) paradigm and several sensors to gather environmental information to facilitate eco-efficiency services. As the attained results suggest, this module allows personal vehicles to be fully integrated in smart city environments, presenting the possibilities of LoRaWAN and Narrow Band-Internet of Things (NB-IoT) communication technologies to provide vehicle connectivity and enable mobile urban sensing.


2020 ◽  
Vol 10 (17) ◽  
pp. 5882
Author(s):  
Federico Desimoni ◽  
Sergio Ilarri ◽  
Laura Po ◽  
Federica Rollo ◽  
Raquel Trillo-Lado

Modern cities face pressing problems with transportation systems including, but not limited to, traffic congestion, safety, health, and pollution. To tackle them, public administrations have implemented roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. In the case of traffic sensor data not only the real-time data are essential, but also historical values need to be preserved and published. When real-time and historical data of smart cities become available, everyone can join an evidence-based debate on the city’s future evolution. The TRAFAIR (Understanding Traffic Flows to Improve Air Quality) project seeks to understand how traffic affects urban air quality. The project develops a platform to provide real-time and predicted values on air quality in several cities in Europe, encompassing tasks such as the deployment of low-cost air quality sensors, data collection and integration, modeling and prediction, the publication of open data, and the development of applications for end-users and public administrations. This paper explicitly focuses on the modeling and semantic annotation of traffic data. We present the tools and techniques used in the project and validate our strategies for data modeling and its semantic enrichment over two cities: Modena (Italy) and Zaragoza (Spain). An experimental evaluation shows that our approach to publish Linked Data is effective.


Sign in / Sign up

Export Citation Format

Share Document