A Model for Heart Disease Prediction Using Feature Selection with Deep Learning

Author(s):  
Vaishali Baviskar ◽  
Madhushi Verma ◽  
Pradeep Chatterjee
Author(s):  
Fathania Firwan Firdaus ◽  
Hanung Adi Nugroho ◽  
Indah Soesanti

Cardiovascular disease has been the number one illness to cause death in the world for years. As information technology develops, many researchers have conducted studies on a computer-assisted diagnosis for heart disease. Predicting heart disease using a computer-assisted system can reduce time and costs. Feature selection can be used to choose the most relevant variables for heart disease. It includes filter, wrapper, embedded, and hybrid. The filter method excels in computation speed. The wrapper and embedded methods consider feature dependencies and interact with classifiers. The hybrid method takes advantage of several methods. Classification is a data mining technique to predict heart disease. It includes traditional machine learning, ensemble learning, hybrid, and deep learning. Traditional machine learning uses a specific algorithm. The ensemble learning combines the predictions of multiple classifiers to improve the performance of a single classifier. The hybrid approach combines some techniques and takes advantage of each method. Deep learning does not require a predetermined feature engineering. This research provides an overview of feature selection and classification methods for the prediction of heart disease in the last ten years. Thus, it can be used as a reference in choosing a method for heart disease prediction for future research.


2020 ◽  
Vol 19 ◽  
pp. 100330 ◽  
Author(s):  
Anna Karen Gárate-Escamila ◽  
Amir Hajjam El Hassani ◽  
Emmanuel Andrès

2018 ◽  
Vol 7 (2.20) ◽  
pp. 153
Author(s):  
Dr M. Sadish Sendil

Cloud computing is a technique for conveying on information development benefits in resources are recovered from the Internet through online based device and applications, as opposed to a speedy association with a server. Cloud has numerous applications in the meadows of education, social networking, and medicine. But the benefit of the cloud for medical reasons is seamless, specifically an account of the huge data generated by the healthcare industry. Heart disease diagnosis determination strategy is essential and significant issue for the patient's wellbeing. Furthermore, it will help to decrease infection to a more specific level. Computer-aided decision support method performs a vital task in medical line. Data mining gives the system and innovation to change these heaps of data into effective information for decision-making. When applying data mining techniques it carries shorter time for the prediction of the disease with more exactness. The hybrid work of preprocessing, feature selection using SVM and SVM based Neuro-Fuzzy data mining strategies utilizing as a part of the determination of the heart disease is incredibly impressive. The framework is to build up a technique for arranging for heart level of the patient relies upon highlight information utilizing Neuro-Fuzzy surmising system. The experiment is done with two different analysis that is one with preprocessed data alone and applied SVM based Neuro Fuzzy Technique and the second one is accomplished with feature selection done data and applied SVM based Neuro Fuzzy Technique. The results prove that the system result of the first one gives 92% accuracy in the heart disease prediction. The second one is giving 95.11% accuracy in the heart disease prediction.  


Author(s):  
Surenthiran Krishnan ◽  
Pritheega Magalingam ◽  
Roslina Ibrahim

<span>This paper proposes a new hybrid deep learning model for heart disease prediction using recurrent neural network (RNN) with the combination of multiple gated recurrent units (GRU), long short-term memory (LSTM) and Adam optimizer. This proposed model resulted in an outstanding accuracy of 98.6876% which is the highest in the existing model of RNN. The model was developed in Python 3.7 by integrating RNN in multiple GRU that operates in Keras and Tensorflow as the backend for deep learning process, supported by various Python libraries. The recent existing models using RNN have reached an accuracy of 98.23% and deep neural network (DNN) has reached 98.5%. The common drawbacks of the existing models are low accuracy due to the complex build-up of the neural network, high number of neurons with redundancy in the neural network model and imbalance datasets of Cleveland. Experiments were conducted with various customized model, where results showed that the proposed model using RNN and multiple GRU with synthetic minority oversampling technique (SMOTe) has reached the best performance level. This is the highest accuracy result for RNN using Cleveland datasets and much promising for making an early heart disease prediction for the patients.</span>


Author(s):  
J. Nageswara Rao ◽  
R. Satya Prasad

Nowadays heart disease becomes more complicated to every human being. Machine Learning and Deep Learning plays the major role in processing the automatic systems. Prediction of heart disease is most difficult task because many algorithms perform limited operations. The aim of the paper is to increase the accuracy and prediction values. Various heart disease datasets are available for the research. Deep Learning (DL) algorithms play the major role in prediction of heart disease. Prediction can be done in the early stages to reduce the risk of death for the humans. In this paper, An Ensemble Deep Dynamic Algorithm (EDDA) is introduced to increase the accuracy of prediction values. The EDDA follows the some steps to process the prediction of heart disease. The steps are as follows: Linear Regression and Deep Boltzmann Machine (DBM) is applied on the selected dataset. Performance is calculated in terms of sensitivity, specificity and accuracy are shown with the comparative results.


Sign in / Sign up

Export Citation Format

Share Document