Optimization of Variable Geometry Turbocharger (VGT) Actuator for a Gasoline Engine

Author(s):  
Qipeng Li ◽  
Tiedong Li ◽  
Tong Chen ◽  
Song Zhang ◽  
Jian Wan ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahmed Ketata ◽  
Zied Driss

PurposeVariable geometry turbine (VGT), a key component of modern internal combustion engines (ICE) turbochargers, is increasingly used for better efficiency and reduced exhaust gas emissions. The aim of this study is the development of a new meanline FORTRAN code for accurate performance and loss assessment of VGTs under a wider operating range. This code is a useful alternative tool for engineers for fast design of VGT systems where higher efficiency and minimum loss are being required.Design/methodology/approachThe proposed meanline code was applied to a variable geometry mixed flow turbine at different nozzle vane angles and under a wide range of rotational speed and the expansion ratio. The numerical methodology was validated through a comparison of the predicted performance to test data. The maps of the mass flow rate as well as the efficiency of the VGT system are discussed for different nozzle vane angles under a wide range of rotational speed. Based on the developed model, a breakdown loss analysis was carried out showing a significant effect of the nozzle vane angle on the loss distribution.FindingsResults indicated that the nozzle angle of 70° has led to the maximum efficiency compared to the other investigated nozzle vane angles ranging from 30° up to 80°. The results showed that the passage loss was significantly reduced as the nozzle vane angle increases from 30° up to 70°.Originality/valueThis paper outlines a new meanline approach for variable geometry turbocharger turbines. The developed code presents the novelty of including the effect of the vane radii variation, due to the pivoting mechanism of the nozzle ring. The developed code can be generalized to either radial or mixed flow turbines with or without a VGT system.


Author(s):  
Anand Mammen Thomas ◽  
Jensen Samuel ◽  
A. Ramesh

Mean-line modelling approach which has generally been applied to fixed geometry turbocharger turbines has been extended to predict the performance of the variable geometry turbine for different inlet blade angles. The model uses an initial assumption of turbine inlet pressure which was iteratively corrected based on outlet pressure boundary condition. The model was implemented in MATLAB and stable and convergent solutions were obtained using relaxation techniques for different operating conditions. Experiments were done on a state of the art transient diesel engine test bed using the same VGT turbine in the turbocharger at different engine torques and speeds. Using experimental data the model was calibrated for the aerodynamic blockage in the fixed nozzle and rotor blade passages. Results revealed that turbine overall pressure ratio can be predicted accurately if a blockage factor varying with nozzle blade orientation is used in the model.


Author(s):  
Zhongjie Zhang ◽  
Ruilin Liu ◽  
Guangmeng Zhou ◽  
Chunhao Yang ◽  
Surong Dong ◽  
...  

A variable geometry turbocharger in series with a variable geometry turbocharger (Twin-VGT) system was designed to improve engine power at high altitudes. The influence of altitudes on the performance of the Twin-VGT system was investigated in the perspective of available exhaust energy. The interaction between exhaust flow characteristics of Twin-VGT and openings of Twin-VGT vanes was theoretically analyzed at different altitudes. Meanwhile, a model of a diesel engine matched with the Twin-VGT system was built to study the matching performance of the Twin-VGT system with engine at different altitudes. The optimal opening maps of both high-pressure and low-pressure VGT vanes at high altitudes were obtained to achieve the maximum engine power. The results showed that the optimal openings of high-pressure and low-pressure VGT vanes decreased with increase in altitudes. The operating points of the two-stage compressors located at the high efficiency region and the compressor efficiency region both exceeded 62% at different altitudes. The global expansion ratio increased with increase in altitudes and reached 4.9 at 5500 m. Compared with the VGT in series with a fixed geometry turbocharger on testing bed, exhaust energy of Twin-VGT turbines at low speeds was utilized reasonably and global pressure ratio increased by 0.69–0.94, while brake-specific fuel consumption decreased by 11.24–33.62% under low speeds above altitudes of 2500 m.


2021 ◽  
Vol 7 ◽  
Author(s):  
Praveen Kumar ◽  
Yu Zhang ◽  
Michael Traver ◽  
John Watson

The simultaneous application of new low-NOx emissions standards and greenhouse gas (GHG) rules has placed great pressure on the commercial vehicle industry and has driven demand for innovative solutions. One potential solution, gasoline compression ignition (GCI), utilizes gasoline’s lower reactivity to promote partially premixed combustion and extract efficiency while reducing the PM-NOx trade-off curve. Gasoline’s volatility allows for the use of higher levels of exhaust gas recirculation (EGR), a key enabler of GCI combustion. In order to deliver higher levels of EGR while maintaining sufficient boost pressure, a tailored and efficient air-handling system is critical. This work presents the analysis-led development of a low-NOx GCI air-handling system including both turbocharger matching and EGR configuration for a prototype heavy-duty GCI engine based on a model year 2013 Cummins ISX diesel engine using low octane gasoline (RON80). In the analysis-driven development process, a 1D engine system-level analysis was closely coupled with closed-cycle 3D CFD GCI combustion development. Three different boost systems were investigated using a validated 1D engine model: 1) the production turbocharger; 2) an off-the-shelf single-stage waste-gate turbocharger; 3) a prototype single-stage variable geometry turbocharger. For each boost system, three EGR configurations were evaluated: 1) a high-pressure EGR route; 2) a low-pressure EGR route; 3) a dual-loop EGR route. The air-handling system performance was first investigated over five steady-state engine operating conditions extracted from the ramped modal cycle supplemental emissions test. Then, through cosimulation using a Simulink-based engine controls model, the best performing candidates under transient operation through the Heavy-Duty Federal Test Procedure certification cycle were identified. The production turbocharger, designed for 4–6 g/kWh engine-out NOx, suffered from low combined turbocharger efficiency under the low-NOx GCI thermal boundary conditions. The prototype 1-Stage variable geometry turbocharger, when used with a high-pressure EGR configuration, demonstrated higher combined efficiencies, while the waste-gate turbocharger showed the best results when used with a dual-loop EGR system. All low-pressure only EGR configurations were found to incur additional pumping penalties due to the need for a back pressure valve to drive sufficient EGR levels. In the transient test cycle analysis, the single-stage high-pressure EGR system was capable of delivering the target boost and EGR, while the off-the-shelf waste-gate turbocharger, with its higher mass inertia, showed slower turbine response and a resulting lag in boost response. Unsurprisingly, the dual-loop EGR system also suffered from delays in EGR delivery during engine acceleration. In summary, the prototype single-stage variable geometry turbocharger with a high-pressure EGR system produced the best performance over both the steady-state and transient engine cycles and was identified as the best candidate for the prototype low-NOx heavy-duty GCI engine.


Sign in / Sign up

Export Citation Format

Share Document