Sustainable Machining Strategies for Better Performance

2022 ◽  
Author(s):  
Kapil Gupta ◽  
Rudolph F Laubscher

The three main pillars of sustainability are the society, the environment, and the economy (people, planet, and profit). The key drivers that sustain these three pillars are energy and resource efficiency, a clean and ‘green’ environment that incorporates effective waste reduction and management, and finally cost-effective production. Sustainable manufacturing implies technologies and/or techniques that target these key drivers during product manufacture. Because of the effort and costs involved in the machining of titanium and its alloys, there is significant scope for improved sustainable manufacturing of these materials. Titanium and its alloys are extensively used for specialized applications in aerospace, medical, and general industry because of their superior strength-to-weight ratio and corrosion resistance. They are, however, generally regarded as difficult-to-machine materials. This article presents an overview of previous and current work and trends as regards to sustainable machining of titanium and its alloys. This article focuses on reviewing previous work to improve the sustainable machining of titanium and its alloys with specific reference to the selection of optimum machining conditions, effect of tool materials and geometry, implementing advanced lubrication and/or cooling techniques, and employing advanced and hybrid machining strategies. The main motivation is to present an overview of the current state of the art to discuss the challenges and to suggest economic and environment-friendly ways for improving the machinability of titanium and its alloys.


Author(s):  
RAJEEV SHARMA ◽  
Binit Kumar Jha ◽  
Vipin Pahuja

Customary mineral based liquids are as a rule broadly utilized in cooling and greases in machining activities. Nonetheless, these cutting liquids are the suitable wellspring of numerous natural and organic issues. To kill the evil impacts related with cutting liquids, it is important to move towards practical machining methods. Such sustainable machining techniques utilize minimize the amount of cutting liquid, fluid nitrogen, vegetable oil or packed air as a cooling-oil medium. The liquids utilized in economical machining strategies are viewed as absolutely biodegradable and Eco-friendly. This paper is a careful survey of the relative multitude of current environmental friendly machining methods as of now rehearsed in the metal cutting cycle. It has been likewise discovered that these economical machining strategies more often than not give better outcomes as far as improved surface nature of the machined part, upgraded apparatus life, less cutting temperatures and slicing powers when contrasted with traditional wet machining techniques. The principle motivation behind this survey work is to recognize the diverse supportable strategies and empower the utilization of such procedures in metal machining, so that, the reducing interaction turns out to be more expense powerful and climate inviting.


Mechanik ◽  
2019 ◽  
Vol 92 (12) ◽  
pp. 824-826
Author(s):  
Piotr Szablewski ◽  
Tomasz Dobrowolski ◽  
Tadeusz Chwalczuk

This paper applies to the tests of the machining of a part made of supper alloy – nickel alloy – Inconel 718, using a monolithic carbide cutter. The paper includes a different versions of cutting methods with variable cutting parameters and machining strategies. The used sustainable machining process allowed to obtain control over the tool wear.


Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 151-156
Author(s):  
Shyam ◽  
M. Shanmuka Srinivas ◽  
Kishor Kumar Gajrani ◽  
A. Udayakumar ◽  
M. Ravi Sankar

2017 ◽  
Vol 147 ◽  
pp. 614-627 ◽  
Author(s):  
Munish Kumar Gupta ◽  
Pardeep Kumar Sood ◽  
Gurraj Singh ◽  
Vishal S. Sharma

2019 ◽  
Vol 71 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Aqib Mashood Khan ◽  
Muhammad Jamil ◽  
Ahsan Ul Haq ◽  
Salman Hussain ◽  
Longhui Meng ◽  
...  

Purpose Sustainable machining is a global consensus and the necessity to cope up the serious environmental threats. Minimum quantity lubrication (MQL) and nanofluids-based MQL(NFMQL) are state-of-the-art sustainable lubrication modes. The purpose of this study is to investigate the effect of process parameters, such as feed rate, depth of cut and cutting fluid flow rate, on temperature and surface roughness of the manufactured pieces during face milling of the AISI D2 steel. Design/methodology/approach A statistical technique called response surface methodology with Box–Behnken Design was used to design experimental runs, and empirical modeling was presented. Analysis of variance was carried out to evaluate the model’s accuracy and the validation of the applied technique. Findings A comprehensive analysis revealed the superiority of implementing NFMQL in comparison to MQL within the levels of process parameters. The comparison has shown a significant reduction of temperature under NFMQL at the tool-workpiece interface from 16.2 to 34.5 per cent and surface roughness from 11.3 to 12 per cent. Practical implications This research is useful for practitioners to predict the responses in workshop and select appropriate cutting parameters. Moreover, this research will be helpful to reduce the resource which will ultimately save energy consumption and cost. Originality/value To cope with the industrial challenges and tribological issues associated with the milling of AISI D2 steel, experiments were conducted in a distinct machining mode with innovative cooling/lubrication. Until now, few studies have addressed the key lubrication effects of Al2O3-based nanofluid on the machinability of D2 steel under NFMQL lubrication condition.


Sign in / Sign up

Export Citation Format

Share Document