Repair of Fire-Damaged Concrete-Filled Double Skin Steel Tubular Columns with Fiber Reinforced Polymer (FRP)

Author(s):  
Kok Keong Choong ◽  
Jayaprakash Jaganathan ◽  
Sharifah Salwa Mohd Zuki ◽  
Shahiron Shahidan ◽  
Nurul Izzati Raihan Ramzi Hannan
2020 ◽  
Vol 23 (7) ◽  
pp. 1487-1504 ◽  
Author(s):  
Bing Zhang ◽  
Jun-Liang Zhao ◽  
Tao Huang ◽  
Ning-Yuan Zhang ◽  
Yi-Jie Zhang ◽  
...  

Hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns are a novel form of hollow columns that combine two traditional construction materials (i.e. concrete and steel) with fiber-reinforced polymer composites. Hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns consist of an inner tube made of steel, an outer tube made of fiber-reinforced polymer, and a concrete layer between the two tubes. Existing studies, however, are focused on hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns with fibers of the fiber-reinforced polymer tube oriented in the hoop direction or close to the hoop direction. In order to investigate the effect of fiber angles (i.e. the fiber angle between the fiber orientation and the longitudinal axis of the fiber-reinforced polymer tube), monotonic axial compression tests were conducted on hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns with an fiber-reinforced polymer tube of ±45°, ±60°, or ±80° fiber angles. There were two types of steel tubes adopted for these hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns. The fiber-reinforced polymer tube thickness was also investigated as an important parameter. Experimental results showed that the confinement effect of the fiber-reinforced polymer tube increased with the increase of the absolute value of fiber angles, whereas the ultimate axial strain of hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns decreased with the increase of the absolute value of fiber angles. An existing stress–strain model, which was developed on the basis of hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns with an fiber-reinforced polymer tube of ±90° fiber angles, is verified using the test results of this study. For the compressive strength of the confined concrete in hybrid fiber-reinforced polymer–concrete–steel double-skin tubular columns, the existing model provides conservative predictions for specimens with a ±80° fiber-reinforced polymer tube, overestimated predictions for specimens with a ±60° fiber-reinforced polymer tube, and close predictions for specimens with a ±45° fiber-reinforced polymer tube.


2020 ◽  
Vol 23 (13) ◽  
pp. 2911-2927
Author(s):  
Yung William Sasy Chan ◽  
Zhi Zhou ◽  
Zhenzhen Wang ◽  
Jinping Ou

Fiber-reinforced polymer composites have been widely used to design fiber-reinforced polymer–based confined concrete columns with potential benefits. However, it is critical to design a column with sufficient post-peak performance that can prevent its collapse at the rupture of the fiber-reinforced polymer tube. This article presents the experimental results on the prior and post peaks behavior of concrete-filled double-skin tubular columns with basalt fiber-reinforced polymer (BFRP)–punched-in outer steel and BFRP-circular inner steel (BFST-DSTCs). Twenty-two specimens were tested under axial compression to investigate the effects of design parameters on the behavior of the BFST-DSTC. The outcomes reveal that the BFST-DSTC exhibits the best performance in terms of load capacity, confinement ratio, failure and damage mechanisms, and ductility in prior and post peaks. The inner fiber-reinforced polymer jacket delays the buckling of the inner tube. The punched-in patterns of the outer steel improve the confinement effectiveness of the fiber-reinforced polymer jacket. The BFST-DSTC displays a good post-peak performance with high-energy dissipation capacity that prevents the concerned structure from collapse after the fiber-reinforced polymer jacket rupture. Finally, a new confinement model is proposed to predict the ultimate point of the confined concrete.


Sign in / Sign up

Export Citation Format

Share Document