Carrier Phase Multipath Error Elimination Method for GNSS Signals Based on an APCRW Correlator

Author(s):  
Chunjiang Ma ◽  
Xiaomei Tang ◽  
Zengjun Liu ◽  
Honglei Lin ◽  
Guangfu Sun
2009 ◽  
Vol 46 (8) ◽  
pp. 627-636
Author(s):  
Ahmed A. El-Ghazouly ◽  
Mohamed Elhabiby ◽  
Naser El-Sheimy

In carrier-phase measurements, which are the most precise observations for Global Positioning System (GPS) relative positioning, multipath error is still a factor that interferes with achieving the desired accuracy. Various improvements in receiver and antenna technologies, as well as modeling strategies, have resulted in better ways of coping with this error source. However, errors caused by multipath can be as large as 5 cm, which is not an acceptable accuracy, especially in precise surveying applications like deformation monitoring. In this paper, a full assessment of different wavelets techniques that can be used in multipath mitigation is made to evaluate the optimum way of using wavelets to reduce or remove this type of error. Also, a new approach based on the wavelet detrending technique is introduced to remove carrier-phase multipath error in the measurement domain. To mitigate multipath, GPS double-difference observables are fed to an adaptive wavelet analysis procedure based on high- and low-pass filter decomposition with different levels of resolution. Consequently, the observable sequences are corrected; these corrected observables can then be used to reduce the ambiguity search volume during the initial float solution stage. Meanwhile, double-difference observations with multipath mitigation offer an efficient method for obtaining a better baseline solution.


Author(s):  
Bakheet Agab Nour ◽  
Ahmet Turan Ozdemir ◽  
Peter Garang ◽  
Oğuzhan Ağırbaş

Multipath is a dominant error source in Real-Time Kinematic (RTK) applications that reduces the position, time and velocity accuracy. Mitigation of such errors can be achieved by better signal processing and antenna design. This paper attempts to examine the different height of RTK system antenna with regards to the multipath error. The results obtained in this work show height significantly change of multipath in pseudo range (MP1) and multipath in the carrier phase (MP2). Different antenna height does not give the same multipath error result in the tests that we have conducted in this work. The optimal height of the antenna was achieved as two meters in order to obtain a minimum multipath error for   MP1 and MP2. At the end of this work, we experimentally proved that there is an inverse relationship between the height of the antenna and multipath with RTK algorithm.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250073
Author(s):  
N. PETRELLIS ◽  
G. ADAM ◽  
D. VENTZAS

Monotonic errors cause severe errors and are inherent in several A/D Converter (ADC) architectures. Moreover, several error correcting and ADC output processing methods require a monotonic behavior for a successful operation. Based on the features of asynchronous ADCs, an architecture for the elimination of monotonic errors is presented. This monotonic error correcting module is connected at the output of an ADC and does not require any modification in its internal circuits. It controls an output buffering stage that discards output codes with monotonic errors and this correcting procedure is triggered by changes in specific output bits of the ADC. Simulation results show an improvement by 8 dB or 25% maximum, in the signal-to-noise and distortion ratio (SNDR) of an 8-bit ADC if this monotonic error elimination method is used alone and a further improvement by 1–5 dB if it is combined with a post processing method developed by the authors. Similar improvement can also be achieved in several other architectures like Subrange or Folding ADCs that operate in relatively high oversampling ratio and suffer from monotonic errors with specific features.


Sign in / Sign up

Export Citation Format

Share Document